Volume 47 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
WANG Ting-ting, LI Yang, JIN Li-jun, WANG De-chao, YAO De-meng, HU Hao-quan. Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 287-296.
Citation: WANG Ting-ting, LI Yang, JIN Li-jun, WANG De-chao, YAO De-meng, HU Hao-quan. Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 287-296.

Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts

Funds:

the Joint Fund of Coal-based Low Carbon by NSFC and Shanxi Provincial Government of China U1710105

the National Key R&D Program of China 2016YFB0600301

More Information
  • Corresponding author: HU Hao-quan, Tel & Fax: +86-411-84986157, E-mail: hhu@dlut.edu.cn
  • Received Date: 2018-11-15
  • Rev Recd Date: 2019-01-17
  • Available Online: 2021-01-23
  • Publish Date: 2019-03-10
  • The upgrading of coal tar by means of steam catalytic cracking (SCC) is a promising method. In this study, Al/Ce and Al/Zr co-doped Fe2O3 catalysts were prepared and used for SCC of coal tar for improving the light tar yield. The SCC was conducted at 550 ℃ for 1 h. It was found that the crystal size decreased over doped Fe2O3 catalysts, and the pore volume and specific surface area increased. XPS analysis showed that lattice oxygen was the majority oxygen species and doping can increased the O- concentration. It was shown that Al/Ce and Al/Zr co-doped Fe2O3 could improve the catalytic activity of Fe2O3. The light tar yield over FeAlZr1, FeAlZr2, FeAlCe1 and FeAlCe2 were 63.2%, 58.1%, 60.2% and 55.1%, respectively, higher than that on Fe2O3 being 49.7%. The oxygen species from steam dissociation and Fe2O3 could take part in the upgrading of coal tar. It was revealed that the specific surface area and the O- on the Fe2O3 catalysts were the primary factors in determining the SCC performance.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    SONOYAMA N, NOBUTA K, KIMURA T, HOSOKAI S, HAYASHI J, TAGO T, MASUDA T. Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere[J]. Fuel Process Technol, 2011, 92(4):771-775. doi: 10.1016/j.fuproc.2010.09.036
    [2]
    SCHOBERT H H, SONG C. Chemicals and materials from coal in the 21st century[J]. Fuel, 2002, 81(1):15-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b41864118cc2025d12ad74de8c7e54d
    [3]
    ZHANG C, WU R C, XU G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolizer enhanced with internals[J]. Energy Fuels, 2014, 28(1):236-244. doi: 10.1021/ef401546n
    [4]
    JIN L J, BAI X Y, YANG L, DONG C, HU H Q, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol, 2016, 147:41-46. doi: 10.1016/j.fuproc.2015.12.028
    [5]
    ZHOU Q, ZOU T, ZHONG M, ZHANG Y M, WU R C, GAO S Q, XU G W. Lignite upgrading by multi-stage fluidized bed pyrolysis[J]. Fuel Process Technol, 2013, 116:35-43. doi: 10.1016/j.fuproc.2013.04.022
    [6]
    HAN L N, ZHANG R, BI J C. Upgrading of coal-tar pitch in supercritical water[J]. J Fuel Chem Technol, 2008, 36(1):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb200801001
    [7]
    KHALIL U, MURAZA O, KONDOH H, WATANABE G, NAKASAKA Y, AL-AMER A, MASUDA T. Production of lighter hydrocarbons by steam-assisted catalytic cracking of heavy oil over Silane-treated Beta Zeolite[J]. Energy Fuels, 2016, 30(2):1304-1309. doi: 10.1021/acs.energyfuels.5b02525
    [8]
    KONDOH H, TANAKA K, NAKASAKA Y, TAGO T, MASUDA T. Catalytic cracking of heavy oil over TiO2-ZrO2 catalysts under superheated steam conditions[J]. Fuel, 2016, 167:288-294. doi: 10.1016/j.fuel.2015.11.075
    [9]
    LEE H S, NGUYEN-HUY C, PHAM T T, SHIN E W. ZrO2-impregnated red mud as a novel catalyst for steam catalytic cracking of vacuum residue[J]. Fuel, 2016, 165:462-467. doi: 10.1016/j.fuel.2015.10.083
    [10]
    KONDOH H, NAKASAKA Y, KITAGUCHI T, YOSHIKAWA T, TAGO T, MASUDA T. Upgrading of oil sand bitumen over an iron oxide catalyst using sub-and super-critical water[J]. Fuel Process Technol, 2016, 145:96-101. doi: 10.1016/j.fuproc.2016.01.030
    [11]
    GONG X M, WANG Z, LI S G, SONG W L, LIN W G. Coal pyrolysis in a laboratory-scale two-stage reactor:Catalytic upgrading of pyrolytic vapors[J]. Chem Eng Technol, 2014, 37(12):2135-2142. doi: 10.1002/ceat.201300748
    [12]
    FUNAI S, FUMOTO E, TAGO T, MASUDA T. Recovery of useful lighter fuels from petroleum residual oil by oxidative cracking with steam using iron oxide catalyst[J]. Chem Eng Sci, 2010, 65(1):60-65. doi: 10.1016/j.ces.2009.03.028
    [13]
    YAMAMOTO S, KENDELEWICZ T, NEWBERG J T, KETTELER G, STARR D E, MYSAK E R, ANDERSSON K J, OGASAWARA H, BLUHM H, SALMERON M, JR BROWN G E, NILSSON A. Water adsorption on α-Fe2O3 (0001) at near ambient conditions[J]. J Phys Chem C, 2010, 114:2256-2266. doi: 10.1021/jp909876t
    [14]
    FUMOTO E, MATSUMURA A, SATO S, TAKANOHASHI T. Recovery of lighter fuels by cracking heavy oil with zirconia-alumina-iron oxide catalysts in a steam atmosphere[J]. Energy Fuels, 2009, 23(1):1338-1341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a10d91aec5e76e0f2f4d73a316654d21
    [15]
    HUANG L, TANG M C, FAN M H, FAN M H, CHEN H S. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Appl Energy, 2015, 159:132-144. doi: 10.1016/j.apenergy.2015.08.118
    [16]
    WANG T T, LI Y, JIN L J, WANG D C, HU H Q. Steam catalytic cracking of coal tar over iron-containing mixed metal oxides[J]. Can J Chem Eng, 2019, 97(3):702-708. doi: 10.1002/cjce.v97.3
    [17]
    DONG C, JIN L J, LI Y, ZHOU Y, ZOU L, HU H Q. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels, 2014, 28(12):7377-7384. doi: 10.1021/ef501796a
    [18]
    WANG D C, JIN L J, LI Y, YAO D M, WANG J F, HU H Q. Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3[J]. Energy, 2018, 162:542-553. doi: 10.1016/j.energy.2018.08.038
    [19]
    NEWNHAM J, MANTRI K, AMIN M H, TARDIO J, BHARGAVA S K. Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane[J]. Int J Hydrogen Energy, 2012, 37(2):1454-1464. doi: 10.1016/j.ijhydene.2011.10.036
    [20]
    WANG D C, JIN L J, LI Y, HU H Q. Partial oxidation of vacuum residue over Al and Zr-doped α-Fe2O3 catalysts[J]. Fuel, 2017, 210:803-810. doi: 10.1016/j.fuel.2017.09.008
    [21]
    STELMACHOWSKI P, KOPACZ A, LEGUTKO P, INDYKA P, WOJTASIK M, ZIEMIANSKI L, ZAK G, SOJKA Z, KOTARBA A. The role of crystallite size of iron oxide catalyst for soot combustion[J]. Catal Today, 2015, 257:111-116. doi: 10.1016/j.cattod.2015.02.018
    [22]
    ZHU X, LI K Z, WEI Y G, WANG H, SUN L Y. Chemical-looping steam methane reforming over a CeO2-Fe2O3 oxygen carrier:Evolution of its structure and reducibility[J]. Energy Fuels, 2014, 28(2):754-760. doi: 10.1021/ef402203a
    [23]
    LIU Y, WEN C, GUO Y, LU G Z, WANG Y Q. Modulated CO oxidation activity of M-doped Ceria (M=Cu, Ti, Zr, and Tb):Role of the Pauling electronegativity of M[J]. J Phys Chem C, 2010, 114(21):9889-9897. doi: 10.1021/jp101939v
    [24]
    HAN X, YU Y B, HE H. Oxidative steam reforming of ethanol over Rh catalyst supported on Ce1-xLaxOy (x=0.3) solid solution prepared by urea co-precipitation method[J]. J Power Sources, 2013, 238:57-64. doi: 10.1016/j.jpowsour.2013.03.032
    [25]
    TABATA K, KAWABE T, YAMAGUCHI Y, NAGASAWA Y. Chemisorbed oxygen species over the (110) face of SnO2[J]. Catal Surv Asia, 2003, 7(4):251-259. doi: 10.1023/B:CATS.0000008164.21582.92
    [26]
    YAMAGUCHI Y, NAGASAWA Y, SHIMOMURA S, TABATA K, SUZUKI E. A density functional theory study of the interaction of oxygen with a reduced SnO2 (110) surface[J]. Chem Phys Lett, 2000, 316(5/6):477-482. http://www.sciencedirect.com/science/article/pii/S0009261499013652
    [27]
    ARONNIEMI M, SAINIO J, LAHTINEN J. XPS study on the correlation between chemical state and oxygen-sensing properties of an iron oxide thin film[J]. Appl Surf Sci, 2007, 253(24):9476-9482. doi: 10.1016/j.apsusc.2007.06.007
    [28]
    KAWABE T, SHIMOMURA S, KARASUDA T, TABATA K, SUZUKI E, YAMAGUCHI Y. Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film[J]. Surf Sci, 2000, 448(2):101-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3f1533e6e073c9e5e1ac0ec3c7114ca
    [29]
    PURON H, ARRILLAGA P, CHIN K K, PINILLA J L, FIDALGO B, MILLA M. Kinetic analysis of vacuum residue hydrocracking in early reaction stages[J]. Fuel, 2014, 117:408-414. doi: 10.1016/j.fuel.2013.09.053
    [30]
    CAPRARⅡS B, BRACCIALE M P, FILIPPIS P D, HERNANDEZ A D, PETRULLO A, SCARSELLA M. Steam reforming of tar model compounds over in supported on CeO2 and mayenite[J]. Can J Chem Eng, 2017, 95:1745-1751. doi: 10.1002/cjce.v95.9
    [31]
    TOMISHIGE K, LI D L, TAMURA M, NAKAGAWA Y. Nickel-iron alloy catalysts for reforming of hydrocarbons:Preparation, structure, and catalytic properties[J]. Catal Sci Technol, 2017, 7(18):3952-3979. doi: 10.1039/C7CY01300K
    [32]
    HUY C N, SHIN E W. Amelioration of catalytic activity in steam catalytic cracking of vacuum residue with ZrO2-impregnated macro-mesoporous red mud[J]. Fuel, 2016, 179:17-24. doi: 10.1016/j.fuel.2016.03.062
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return