Volume 45 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 129-137.
Citation: ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 129-137.

Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char

Funds:

National Natural Science Foundation of China 21176078

More Information
  • Corresponding author: E-mail:wxj@ecust.edu.cn
  • Received Date: 2016-08-17
  • Rev Recd Date: 2016-11-22
  • Available Online: 2021-01-23
  • Publish Date: 2017-02-10
  • Coal hydrogasification, divided into coal pyrolysis and char hydrogasification, was studied in a fixed bed reactor.FT-IR gas analyzer, Laser Raman analyzer and XRD were applied to analyze the relationship between gas production component of coal pyrolysis and microstructure change of char, and the influence of microstructure change of char on char hydrogasification reactivity.The results show that pyrolysis temperature has an obvious effect on microstructure and hydrogasification reactivity of char.With rising temperature, the ratios of Raman band area AD1/AG, AD2/AG, AD3/AG, AD4/AG gradually rises, and the ratio of AG/AAll decreases within 400-800℃ and increases within 800-900℃.It indicates that graphitization process of char is obviously emerged due to the increase of relative amount of disordered carbon in pyrolysis.The results of XRD analysis are in accordance with those of Raman analysis.The interplanar crystal spacing d002 increases within 400-800℃.d002 decreases and L002 increases sharply within 800-900℃.By fitting the Raman area ratio formula (aAD1/G+bAD2/G+cAD3/G+dAD4/G) with hydrogasification reactivity (τ0.5), the obtained factor represents the hydrogasification reactivity of carbon microcrystal.The factor is bigger, and the reactivity of carbon microcrystal is better.
  • loading
  • [1]
    何选明. 煤化学第2版[M]. 北京:冶金工业出版社, 2010.

    HE Xuan-ming. Coal Chem[M]. Beijing:Metallurgical Industry Press, 2010.
    [2]
    赵博, 杨永忠, 刘丽婷, 白斌, 张小庆, 王崇侠. 拉曼光谱技术在煤分析中的应用进展[J]. 洁净煤技术, 2015, 21(3):79-82. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201503022.htm

    ZHAO Bo, YANG Yong-zhong, LIU Li-ting, BAI Bin, ZHANG Xiao-qing, WANG Chong-xia. Application of raman spectroscopy in coal properties analysis[J].Clean Coal Technol, 2015, 21(3):79-82. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201503022.htm
    [3]
    SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [4]
    LI X, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VⅢ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10):1518-1525.
    [5]
    SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [6]
    范晓雷, 杨帆, 张薇, 周志杰, 王辅臣, 于遵宏. 热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J]. 燃料化学学报, 2006, 34(4):395-398. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17035.shtml

    FAN Xiao-lei, YANG Fan, ZHANG Wei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Variation of the crystalline structure of coal char during pyrolysis and its effect on gasification reactivity[J]. J Fuel Chem Technol, 2006, 34(4):395-398. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17035.shtml
    [7]
    LIU X, ZHENG Y, LIU Z, DING H, HUANG X, ZHENG C. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015, 157:97-106. doi: 10.1016/j.fuel.2015.04.025
    [8]
    柳晓飞, 尤静林, 王媛媛, LU Li-ming, 解迎芳, 余立旺, 伏清. 澳大利亚烟煤热解的拉曼光谱研究[J]. 燃料化学学报, 2014, 42(3):270-276. doi: 10.1016/S1872-5813(14)60019-0

    LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, JIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. J Fuel Chem Technol, 2014, 42(3):270-276. doi: 10.1016/S1872-5813(14)60019-0
    [9]
    TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phy, 1970, 53(3):1126-1130. doi: 10.1063/1.1674108
    [10]
    陈旺, 焦娜, 徐樑华, 曹维宇. 碳纤维在石墨化处理过程中的sp, 2结构转变[J]. 宇航材料工艺, 2013, 43(5):46-48.

    CHEN Wang, JIAO Na, XU Liang-hua, CAO Wei-yu. Transition of sp, 2 hybridization structure during graphitization of carbon fiber[J]. Aerosp Mater Technol, 2013, 43(5):46-48.
    [11]
    SFORNA M C, ZUILEN M A V, PHILIPPOT P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia[J]. Geochim Cosmochim Acta, 2014, 124(1):18-33.
    [12]
    LI X J, HAYASGI J, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13):1700-1707.
    [13]
    赵冰, 周志杰, 丁路, 于广锁. 快速热处理石油焦与煤的微观结构变化及气化活性分析[J]. 燃料化学学报, 2013, 41(1):40-45. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18098.shtml

    ZHAO Bing, ZHOU Zhi-jie, DING Lu, YU Guang-suo. Changes in the microstructure and gasification reactivity of petroleum coke and coal samples after rapid pyrolysis[J]. J Fuel Chem Technol, 2013, 41(1):40-45. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18098.shtml
    [14]
    常海洲, 蔡雪梅, 李改仙, 白官, 吕秀清. 不同还原程度煤显微组分堆垛结构表征[J]. 山西大学学报:自然科学版, 2008, 31(2):223-227. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDR200802024.htm

    CHANG Hai-zhou, CAI Xue-mei, LI Gai-xian, BAI Guan, LV Xiu-qing. Characterization for the stacking structure of coal macerals with different type reductivity[J]. J Shanxi Univ (Nat Sci Ed), 2008, 31(2):223-227. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDR200802024.htm
    [15]
    LU L, VEENA SAHAJWALLA A, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube Furnace[J]. Energy Fuels, 2000, 14(4):869-876. doi: 10.1021/ef990236s
    [16]
    周军, 张海, 吕俊复, 岳光溪. 高温下热解温度对煤焦孔隙结构的影响[J]. 燃料化学学报, 2007, 35(2):155-159. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17121.shtml

    ZHOU Jun, ZHANG Hai, LV Jun-fu, YUE Guang-xi. Evolvement behavior of carbon minicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2007, 35(2):155-159. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17121.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (306) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return