Volume 48 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
CHEN Ran, LIU Jie, ZHANG Xiang-wen. Enhancement of thermal oxidation stability of endothermic hydrocarbon fuels by using oxygen scavengers[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 249-256.
Citation: CHEN Ran, LIU Jie, ZHANG Xiang-wen. Enhancement of thermal oxidation stability of endothermic hydrocarbon fuels by using oxygen scavengers[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 249-256.

Enhancement of thermal oxidation stability of endothermic hydrocarbon fuels by using oxygen scavengers

Funds:

the National Natural Science Foundation of China 21476168

More Information
  • Thermal oxidation stability is one of the important properties for evaluating fuel quality during the storage and use of endothermic hydrocarbon fuels; it reflects the extent to which jet fuel is affected by dissolved oxygen below 260℃ and the depth of oxidation reaction. In this work, the basic properties and thermal stability of endothermic hydrocarbon fuels with oxygen scavengers were evaluated by accelerated oxidation method combined with titration, infrared spectroscopy, particle size distribution and JFTOT. The effect of three oxygen scavengers, viz., triphenylphosphine (TPP), dicyclohexylphenylphosphine (DCP) and 1, 2, 5-trimethylpyrrole (TMP), on the auto-oxidation process of endothermic hydrocarbon fuels were comparatively investigated and the optimal addition amount within the test range was determined. The results show that there is no significant change in the fuel composition and basic physical properties after the addition of oxygen scavengers. The dissolved oxygen concentration in the fuel decreases with the increase of the amount of oxygen scavengers, and the maximum drop is 31.95 mg/m3. The peroxide value and acid value of the samples show different degrees of decline after accelerated oxidation, and the particle size distribution of the micelles tends to be smaller. The JFTOT test results can meet the national standards. In general, the addition of oxygen scavenger can effectively improve the thermal oxidation stability of the fuel; the effect of three oxygen scavengers follows the order of TMP >TPP ≈ DCP and the optimal addition amount is 1.5×10-5 (by mass fraction).
  • loading
  • [1]
    巴波可K K (苏).喷气燃料与火箭燃料[M].张溥等译.北京: 中国工业出版社, 1965.

    BABOK K K. Jet Fuel and Rocket Fuel[M]. ZHANG Pu et al, translation. Beijing: China Industry Press, 1965.
    [2]
    TAYLOR W F. Jet Fuel Thermal Stability[Z]. USA: NASA, 1979.
    [3]
    杰尼索夫E T, 柯瓦列夫Г И (苏).喷气燃料的氧化及其抑制[M].常汝楫译.北京: 烃加工出版社, 1987.

    DENNSOV E T, KOVALEV G I. Oxidation & Antioxidation of Jet Fuel[M]. CHANG Ru-ji translation. Beijing: Hydrocarbon Processing Press, 1987.
    [4]
    范启明, 米镇涛, 张香文, 于燕.提高航空燃料热安定性的研究进展[J].石化技术与应用, 2002, 20(4):261-263. doi: 10.3969/j.issn.1009-0045.2002.04.014

    FAN Qi-ming, MI Zhen-tao, ZHANG Xiang-wen, YU Yan. Progress in research of improving thermal stability of aviation fuels[J]. Petrochem Technol Appl, 2002, 20(4):261-263. doi: 10.3969/j.issn.1009-0045.2002.04.014
    [5]
    ROAN M A, BOEHMAN A L. The effect of fuel composition and dissolved oxygen on deposit formation from potential JP-900 basestocks[J]. Energy Fuels, 2004, 18(3):835-843. doi: 10.1021-ef034050b/
    [6]
    ZABARNICK S. Chemical kinetic modeling of jet fuel autoxidation and antioxidant chemistry[J]. Ind Eng Chem Res, 1993, 32(6):1012-1017. doi: 10.1021/ie00018a003
    [7]
    ALBORZI E, GADSBY P, ISMAIL M S, SHEIKHANSARI A, DWYER M R, MEIJER A J, BLAKEY S G, POURKASHANIAN M. Comparative study of the effect of fuel deoxygenation and polar species removal on jet fuel surface deposition[J]. Energy Fuels, 2019, 33(3):1825-1836.
    [8]
    王晨臣, 彭孝天, 王苏明, 刘卫华, 冯诗愚.溶解氧含量对燃油结焦的影响综述[J].中国民航飞行学院学报, 2018, 29(5):19-22+27. doi: 10.3969/j.issn.1009-4288.2018.05.005

    WANG Chen-chen, PENG Xiao-tian, WANG Su-ming, LIU Wei-hua, FENG Shi-yu. Summarization of the effect of dissolved oxygen content on fuel coking[J]. J Civil Avia Flight Univ Chin, 2018, 29(5):19-22+27. doi: 10.3969/j.issn.1009-4288.2018.05.005
    [9]
    BEAVER B D. Development of oxygen scavenger additives for jet fuels[D]. Pittsburgh: Duquesne University, 1993.
    [10]
    BEAVER B D, DEMUNSHI R, HENEGHAN S P, WHITACRE S D, NETA P. Model studies directed at the development of new thermal oxidative stability enhancing additives for future jet fuels[J]. Energy Fuels, 1997, 11(2):396-401. doi: 10.1021/ef960192c
    [11]
    BEAVER B D, GAO L, FEDAK M G, COLEMAN M M, SOBKOWIAK M. Model studies examining the use of dicyclohexylphenylphosphine to enhance the oxidative and thermal stability of future jet fuels[J]. Energy Fuels, 2002, 16(5):1134-1140. doi: 10.1021/ef020028r
    [12]
    BEAVER B D, TENG Y, GUIRIEC P, HAPIOT P, NETA P. Mechanisms of oxidation of 1, 2, 5-trimethylpyrrole:Kinetic, spectroscopic, and electrochemical studies[J]. J Phys Chem A, 1998, 102(30):6121-6128. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Journal%20of%20Physical%20Chemistry%20A&volume=102&issue=30&spage=6121
    [13]
    THAVASI V, BETTENS R P A, LEONG L P. Temperature and solvent effects on radical scavenging ability of phenols[J]. J Phys Chem A, 2009, 113(13):3068-3077. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fdffdadb30c2a91fd78d51f064e6e4ae
    [14]
    MACLEAN P D, CHAPMAN E E, DOBROWOLSKI S L, THOMPSON A, BARCLAY L R C. Pyrroles as antioxidants:Solvent effects and the nature of the attacking radical on antioxidant activities and mechanisms of pyrroles, dipyrrinones, and bile pigments[J].J Org Chem, 2008, 73(17):6623-6635. doi: 10.1021/jo8005073
    [15]
    IUGA C, URIBE S O, MIRANDA L D, VIVIER BUNGE A. Selectivity in radical alkylation of substituted pyrroles[J]. Int J Quantum Chem, 2010, 110(3):697-705. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac1ed205e1deffc0c0b7cb7f064d3cd4
    [16]
    GB/T-6537-2018, 3号喷气燃料[S].

    GB/T-6537-2018, No.3 jet fuel[S].
    [17]
    GB/T-1884-2000, 原油和液体石油产品密度实验室测定法(密度计法)[S].

    GB/T-1884-2000, Crude petroleum and liquid petroleum products-Laboratory determination of density-Hydrometer method[S].
    [18]
    GB/T-384-1981, 石油产品热值测定法[S].

    GB/T-384-1981, Determination of calorific value of petroleum products[S].
    [19]
    GB/T-2429-1988, 航空燃料净热值计算法[S].

    GB/T-2429-1988, Aviation fuels-Calculation of net heat of combustion[S].
    [20]
    GB/T-3536-2008, 石油产品闪点和燃点的测定-克利夫兰开口杯法[S].

    GB/T-3536-2008, Petroleum products-Determination of flash and fire points-Cleveland open cup method[S].
    [21]
    GB/T-265-1988, 石油产品运动粘度测定法和动力粘度计算法[S].

    GB/T-265-1988, Petroleum products-Determination of kinematic viscosity and calculation of dynamic viscosity[S].
    [22]
    GB/T 601-2016, 化学试剂标准滴定溶液的制备[S].

    GB/T 601-2016, Chemical reagent-Preparations of reference titration solutions[S].
    [23]
    SH/T 0176-1992, 喷气燃料过氧化值测定法[S].

    SH/T 0176-1992, Standard test method for hydroperoxide number of aviation turbine fuels, gasoline and diesel fuels[S].
    [24]
    GB/T 12574—1990, 喷气燃料总酸值测定法[S].

    GB/T 12574—1990, Jet fuels-Determination of total acid number[S].
    [25]
    GB/T-9169-2010, 喷气燃料热氧化安定性的测定JFTOT法[S].

    GB/T-9169-2010, Standard test method for thermal oxidation stability of aviation turbine fuels.JFTOT procedure[S].
    [26]
    GB/T-3555-1992, 石油产品塞伯特颜色测试法[S].

    GB/T-3555-1992, Petroleum products-Determination of Saybolt color-Saybolt chromometer method[S].
    [27]
    SH/T-0174-2015, 石油产品和烃类溶剂中硫醇和其他硫化物的检测博士实验[S].

    SH/T-0174-2015, Petroleum products and hydrocarbon solvents-Detection of thiols and other sulfur species-Doctor test[S].
    [28]
    ZHAO L, ZHANG X, PAN L, LIU J. Storage period prediction and metal compatibility of endothermic hydrocarbon fuels[J]. Fuel, 2018, 233:1-9. doi: 10.1016/j.fuel.2018.06.034
    [29]
    MIL-T-5624P, Military specification: Turbine fuel, aviation, grades JP-4, JP-5, and JP-5 / JP-8[S].
    [30]
    ERVIN J, HENEGHAN S, MARTEL C, WILLIAMS T. Surface effects on deposits from jet fuels[J]. J Eng Gas Turb Power, 1996, 118(2):278-285. doi: 10.1115/1.2816589
    [31]
    BEAVER B D, CLIFFORD C B, FEDAK M G, GAO L, IYER P S, SOBKOWIAK M. High heat sink jet fuels. Part 1. Development of potential oxidative and pyrolytic additives for JP-8[J]. Energy Fuels, 2006, 20(4):1639-1646. doi: 10.1021/ef050352x
    [32]
    MASNOVI J, KOCHI J. Direct observation of ion-pair dynamics[J]. J Am Chem Soc, 1985, 107(26): 7880-7893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (178) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return