Volume 46 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
ZHOU Jian, RAN Jing-yu, ZHANG Li. A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 189-197.
Citation: ZHOU Jian, RAN Jing-yu, ZHANG Li. A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 189-197.

A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid

More Information
  • Corresponding author: RAN Jing-yu, E-mail: ranjy@cqu.edu.cn
  • Received Date: 2017-09-05
  • Rev Recd Date: 2018-01-31
  • Available Online: 2021-01-23
  • Publish Date: 2018-02-10
  • The reaction pathways for the oxidation of C6H2(OH)3CH3 oxidizing into hydroxyl benzoic acid were investigated by using density functional theory (DFT) method at the GGA/BP levels with Materials Studio 8.0 program. The results illustrated that the reactions for the oxidation of hydrogen on the methyl into hydroxyl, the hydroxyl to aldehyde, and then the aldehyde to carboxylic are all exothermic. As the main path, the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid follows:C6H2(OH)3CH3+3O → C6H2(OH)3C(OH)3 → C6H2(OH)3COOH+H2O; as the controlling step, the conversion of hydroxyl to carboxyl exhibits a high energy barrier (130 kJ/mol) and a low reaction rate (ln(k)=-22.96 s-1). The oxidation of hydroxyl and aldehyde to carboxylic acid follows the sequence of -CHO > -C(OH)3 > -HC(OH)2 > -H2C(OH). An increase in the temperature and oxygen concentration is beneficial to the formation of hydroxyl benzoic acid, whereas appropriate catalyst can promote the whole reaction process.
  • loading
  • [1]
    高建业.煤液化燃料替代石油的开发应用[J].煤气与热力, 2007, 27(1):37-43. http://d.old.wanfangdata.com.cn/Periodical/mqyrl200701011

    GAO Jian-ye. The development of alternative fuels for coal liquefaction fuels[J]. Gas Heat, 2007, 27(1):37-43. http://d.old.wanfangdata.com.cn/Periodical/mqyrl200701011
    [2]
    SIMSEK E H, KARADUMAN A, OLCAY A. Liquefaction of turkish coals in tetralin with microwaves[J]. Fuel Process Technol, 2001, 73(2):111-125 doi: 10.1016/S0378-3820(01)00196-5
    [3]
    AMESTICA L A, WOLF E E. Catalytic liquefaction of coal with supercritical water/CO/solvent media[J]. Fuel, 1986, 65(9):1226-1233 doi: 10.1016/0016-2361(86)90234-6
    [4]
    王春萍.我国煤液化概况[J].化学工程师, 2005, 19(12):40-41. doi: 10.3969/j.issn.1002-1124.2005.12.016

    WANG Chun-ping. General situation of coal liquefaction in china[J]. Chem Eng, 2005, 19(12):40-41. doi: 10.3969/j.issn.1002-1124.2005.12.016
    [5]
    ESPINOZA R L, STEYNBERG A P, JAGER B, VOSLOO A C. Low temperature Fischer-Tropsch synthesis from a sasol perspective[J]. Appl Catal A:Gen, 1999, 186(1/2):13-26. https://www.sciencedirect.com/science/article/pii/S0926860X99001611
    [6]
    STEYNBERG A P, ESPINOZA R L, JAGER B, VOSLOO A C. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Appl Catal A:Gen, 1999, 186(1/2):41-54. https://www.sciencedirect.com/science/article/pii/S0926860X99001635
    [7]
    吴春来.南非SASOL的煤炭间接液化技术[J].煤化工, 2003, (2):3-6. http://www.wenkuxiazai.com/doc/c0b84a6c1eb91a37f1115cff-4.html

    WU Chun-lai. Coal indirect liquefaction technology of south africa's SASOL[J]. Coal Chem Ind, 2003, (2):3-6. http://www.wenkuxiazai.com/doc/c0b84a6c1eb91a37f1115cff-4.html
    [8]
    VAN WECHEM V M H, SENDEN M M G. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS)[J]. Catal Today, 1991, 8(3):43-71. https://www.sciencedirect.com/science/article/pii/S0167299108638483
    [9]
    相宏伟, 唐宏青, 李永旺.煤化工工艺评述与展望Ⅳ.煤间接液化技术[J].燃料化学学报, 2001, 29(4):289-298. http://www.cqvip.com/qk/90650X/200104/5489359.html

    XIANG Hong-wei, TANG Hong-qing, LI Yong-wang. Review and prospect of coal chemical technologyⅣ.Coal indirect liquefaction technology[J]. J Fuel Chem Technol, 2001, 29(4):289-298. http://www.cqvip.com/qk/90650X/200104/5489359.html
    [10]
    LIU Z X, LIU Z C. GC/MS analysis of water-soluble products from the mild oxidation of longkou brown coal with H2O2[J]. Energy Fuels, 2003, 17(2):424-426. doi: 10.1021/ef020071e
    [11]
    KOUICHI M, KAZUHIRO M. New oxidative degradation method for producing fatty acids in hgh yields and high selectivity from low-rank coals[J]. Energy Fuels, 1996, 10(6):1196-1201. https://www.sciencedirect.com/science/article/pii/S0016236114011211
    [12]
    JUN-ICHIRO H. Depolymerization of lower rank coals by low-temperature O2 oxidation[J]. Energy Fuels, 1997, 11(1):227-235. doi: 10.1021/ef960104o
    [13]
    KAZUHIRO M. Extraction of low-rank coals oxidized with hydrogen peroxide in conventionally used solvents at room temperature[J]. Energy Fuels, 1997, 11(4):825-831. doi: 10.1021/ef960225o
    [14]
    冯波, 其鲁, 张敬华.弱氧化环境下褐煤氧化产物的定性分析[J].冶金分析, 2009, 29(1):21-24. doi: 10.3969/j.issn.1000-7571.2009.01.005

    FENG Bo, QI Lu, ZHANG Jing-hua. Qualitative and metallurgical analysis of lignite oxidation products in weak oxidized environment[J]. Metall Anal, 2009, 29(1):21-24. doi: 10.3969/j.issn.1000-7571.2009.01.005
    [15]
    YANG F, HOU Y, WU W, WANG Q, NIU M G, REN S H. The relationship between benzene carboxylic acids from coal via selective oxidation and coal rank[J]. Fuel Process Technol, 2017, 160:207-215. doi: 10.1016/j.fuproc.2017.02.035
    [16]
    WANG W, HOU Y, NIU M, WU T, WU W Z. Production of benzene polycarboxylic acids from bituminous coal by alkali-oxygen oxidation at high temperatures[J]. Fuel Process Technol, 2013, 110(6):184-189. https://www.sciencedirect.com/science/article/pii/S0378382012004584
    [17]
    赵宇薇. 褐煤碱-氧氧化的产物分析及其结构的基础研究[D]. 北京: 北京化工大学, 2015. http://d.wanfangdata.com.cn/Thesis/Y2862009

    ZHAO Yu-wei. Product and structure analysis of basic research for lignite oxidation in oxygen alkaline environment[D]. Beijing: Beijing University of Chemical Technology, 2015. http://d.wanfangdata.com.cn/Thesis/Y2862009
    [18]
    汪文化. 煤炭、生物质选择性催化氧化制备化学品的研究[D]. 北京: 北京化工大学, 2013.

    WANG Wen-hua. The research of selective catalytic oxidation for preparation chemicals by coal and biomass[D]. Beijing: Beijing University of Chemical Technology, 2013.
    [19]
    YANG F, HOU Y, WU W, WANG Q. A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids[J]. Fuel, 2017, 189:408-418.
    [20]
    吴桐. 多种煤碱氧化制备苯羧酸及其产物分离的研究[D]. 北京: 北京化工大学, 2014.

    WU Tong. The study of preparation of Benzene carboxylic acid and its separation by kinds of coal oxidation in oxygen alkaline[D]. Beijing: Beijing University of Chemical Technology, 2014.
    [21]
    WANG W, HOU Y, WU W, NIU M G. Simultaneous production of small-molecule fatty acids and benzene polycarboxylic acids from lignite by alkali-oxygen oxidation[J]. Fuel Process Technol, 2013, 112(4):7-11. https://www.sciencedirect.com/science/article/pii/S0378382013000623
    [22]
    朱培之, 高晋生.煤化学[M].上海:上海科技出版社. 1984.

    ZHU Pei-zi, GAO Jin-shen. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984.
    [23]
    虞继舜.煤化学[M].北京:冶金工业出版社. 2000.

    YU Ji-shun. Coal Chemistry[M]. Beijing:Metallurgical Industry Press, 2000.
    [24]
    QI W, RAN J, WANG R, SHI J, DU X S, RAN M C. Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111) surface:A DFT study with cluster modeling[J]. Comput Mater Sci, 2016, 111:430-442. doi: 10.1016/j.commatsci.2015.09.002
    [25]
    JAMES O O, MANDAL S, ALELE N, CHOWDHURY B, MAITY S. Lower alkanes dehydrogenation:Strategies and reaction routes to corresponding alkenes[J]. Fuel Process Technol, 2016, 149:239-255. doi: 10.1016/j.fuproc.2016.04.016
    [26]
    DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000, 113(18):7756-7764. doi: 10.1063/1.1316015
    [27]
    PERDEW J P, CHEVARY J A, VOSKO S H, PEDERSON M R, SINGH D J, PHYS F C. Erratum:Atoms, Molecules, Solids, And Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation[M]. Phys Rev B:Condens Matter, 1993.
    [28]
    WANG B, WEI X, XIE K. Study on reaction of N-methyl-2-pyrrolidinone with carbon disulfide using density functional theory[J]. J Chem Ind Eng, 2004, 55(4):569-574.
    [29]
    CLEMENS A H, MATHESON T W, ROGERS D E. Low temperature oxidation studies of dried new zealand coals[J]. Fuel, 1991, 70(2):215-221. doi: 10.1016/0016-2361(91)90155-4
    [30]
    GUO W, TIAN W Q, LIAN X, LIU F L, ZHOU M, XIAO P, ZHANG Y H. A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt 7, and Pt 7-x Ni x, (x=1, 2, 3) bimetallic clusters:A DFT study[J]. Comput Theor Chem, 2014, 1032(5):73-83. https://www.sciencedirect.com/science/article/pii/S036031991201837X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (161) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return