Volume 46 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1359-1369.
Citation: YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1359-1369.

Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance

Funds:

the National Natural Science Foundation of China 21076058

National Natural Science Foundation of Hebei Province B2014202004

  • Received Date: 2018-07-17
  • Rev Recd Date: 2018-09-16
  • Available Online: 2021-01-23
  • Publish Date: 2018-11-10
  • Monoclinic WO3 was successfully synthesized by the hydrothermal method using sodium tungstate as tungsten source, nitric acid as acid source, and citric acid (tartaric acid) as surfactant. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance (UV-vis-DR), and Brunner-Emmet-Teller (BET) were employed to characterize the structure and morphology of WO3. The effects of molar ratios of nitric acid and citric acid (tartaric acid) to tungsten atoms on crystal phases and morphologies of WO3 were investigated in detail. The results indicated that large amounts of nitric acid and addition of hydroxyl acids were found favorable for the formation of monoclinic WO3. Monoclinic WO3 was achieved under suitable conditions of molar ratios of nitric acid to tungsten atom of 2.8:1 and hydroxyl acids to tungsten atom of 0.8:1. The WO3 was coupled with p-type semiconductor CuCrO2 to fabricate the CuCrO2-WO3 composite photocatalyst. It was used for hydrogen production from photocatalytic decomposition of water. The monoclinic WO3 with high crystalline perfection exhibited better photocatalytic properties.
  • loading
  • [1]
    LI N, ZHAO Y, WANG Y, LU Y, SONG Y H, HUANG Z F, LI Y W, ZHAO J Z. Aqueous synthesis and visible-light photochromism of metastable h-WO3 hierarchical nanostructures[J]. Eur J Inorg Chem, 2015, 17:2804-2812. doi: 10.1002/ejic.201500132/pdf
    [2]
    HUANG R, SHEN Y, ZHAO L, YAN M Y. Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder[J]. Adv Powder Technol, 2012, 23:211-214. doi: 10.1016/j.apt.2011.02.009
    [3]
    宋敬敬, 王萍萍, 严回, 张现峰, 李倩.苹果酸用量对WO3粉体结构及光致变色性能的影响[J].硅酸盐学报, 2016, 44(7):976-980. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201607010

    SONG Jing-jing, WANG Ping-ping, YAN Hui, ZHANG Xian-feng, LI Qian. Influence of malic acid dosage on structure and photochromic properties of WO3 nano-powders[J]. J Chin Ceram Soc, 2016, 44(7):976-980. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201607010
    [4]
    JIAO Z H, WANG J M, LIN K, LIU X W, DEMIR H V, YANG M F, SUN X W. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device[J]. Electrochim Acta, 2012, 63:153-160. doi: 10.1016/j.electacta.2011.12.069
    [5]
    ZHENG F, MAN W K, GUO M, ZHANG M, ZHEN Q. Effects of morphology, size and crystallinity on the electrochromic properties of nanostructured WO3 films[J]. Cryst Eng Comm, 2015, 17:5440-5450. doi: 10.1039/C5CE00832H
    [6]
    彭明栋, 章俞之, 宋力昕, 尹小富, 王盼盼, 吴岭南, 胡行方.钛掺杂三氧化钨薄膜结构与电致变色性能研究[J].无机材料学报, 2017, 32(3):287-292. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201703011

    PENG Ming-dong, ZHANG Yu-zhi, SONG Li-xin, YIN Xiao-fu, WANG Pan-pan, WU Ling-nan, HU Xing-fang. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering[J]. J Inorg Mater, 2017, 32(3):287-292. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201703011
    [7]
    TAKÁCS M, DÜCSÖ C, LÁBADI Z, PAP A E. Effect of hexagonal WO3 morphology on NH3 sensing[J]. Procedia Eng, 2014, 87:1011-1014. doi: 10.1016/j.proeng.2014.11.331
    [8]
    MIAO B, ZENG W, MU Y J, YU W J, HUSSAIN S, XU S B, ZHANG H, LI T M. Controlled synthesis of monodisperse WO3·H2O square nanoplates and their gas sensing properties[J]. Appl Surf Sci, 2015, 349:380-386. doi: 10.1016/j.apsusc.2015.04.226
    [9]
    CAO S X, ZHAO C, HAN T, PENG L L. Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers[J]. Mater Lett, 2016, 169:17-20. doi: 10.1016/j.matlet.2016.01.053
    [10]
    罗坚义, 张瑀, 陈学贤, 李伟达, 邓伟源, 周洋洋. Pt表面修饰WO3纳米线薄膜对高浓度氢气传感性能的研究[J].人工晶体学报, 2013, 42(10):2109-2120. doi: 10.3969/j.issn.1000-985X.2013.10.026

    LUO Jian-yi, ZHANG Yu, CHEN Xue-xian, LI Wei-da, DENG Wei-yuan, ZHOU Yang-yang. Study on the sensing property of Pt coated WO3 nanowire film for high concentration of H2 gas[J]. J Synth Cryst, 2013, 42(10):2109-2120. doi: 10.3969/j.issn.1000-985X.2013.10.026
    [11]
    CHEN D, YE J H. Hierarchical WO3 hollow shells:Dendrite, sphere, dumbbell, and their photocatalytic properties[J]. Adv Funct Mater, 2010, 18:1922-1928. doi: 10.1002/adfm.200701468/full
    [12]
    XIE Y P, LIU G, YIN L C, CHENG H M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion[J]. J Mater Chem, 2012, 22:6746-6751. doi: 10.1039/c2jm16178h
    [13]
    BATHE S R, PATIL P S. Electrochromic characteristics of pulsed spray pyrolyzed polycrystalline WO3 thin films[J]. Smart Mater Struct, 2009, 18:1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026517560
    [14]
    GUERY C, CHOQUET C, DUJEANCOURT F, TARASCON J C, LASSEGUES J C. Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates[J]. J Solid State Electrochem, 1997, 1:199-207. doi: 10.1007/s100080050049
    [15]
    CHEN D L, WANG H L, ZHANG R, GAO L, SUGAHARAC Y. YASUMORI A. Single-crystalline tungsten oxide nanoplates[J]. J Ceram Process Res, 2008, 9:596-600. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027295013/
    [16]
    CHEN D L, GAO L, YASUMORI A, KURODA K, SUGAHARA Y. Size-and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas[J]. Small, 2008, 4:1813-1822. doi: 10.1002/smll.v4:10
    [17]
    LI X X, ZHANG G Y, CHENG F Y, GUO B. CHEN J. Synthesis, characterization, and gas-sensor application of WO3 nanocuboids[J]. J Electrochem Soc, 2006, 153:133-137. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000013000020000005000001&idtype=cvips&gifs=Yes
    [18]
    CHEN Q P, LI J H, ZHOU B X, LONG M C, CHEN H C, LIU Y B, CAI W M, SHANGGUAN W F. Preparation of well-aligned WO3 nanoflake arrays vertically grown on tungsten substrate as photoanode for photoelectrochemical water splitting[J]. Electrochem Commun, 2012, 20:153-156. doi: 10.1016/j.elecom.2012.03.043
    [19]
    XIN G, GUO W, MA T L. Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution[J]. Appl Surf Sci, 2009, 256:165-169. doi: 10.1016/j.apsusc.2009.07.102
    [20]
    ZHANG H L, YANG J Q, LI D, GUO W, QIN Q, ZHU L J, ZHENG W J. Template-free facile preparation of monoclinic WO3 nanoplates and their high photocatalytic activities[J]. Appl Surf Sci, 2014, 305:274-280. doi: 10.1016/j.apsusc.2014.03.061
    [21]
    ZHU W Y, LIU J C, YU S Y, ZHOU Y, YAN X L. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation[J].J Hazard Mater, 2016, 318:407-416. doi: 10.1016/j.jhazmat.2016.06.066
    [22]
    DIRANY N, ARAB M, LEROUX C, VILLAIN S, MADIGOU V, GAVARRI J R. Effect of WO3 nanoparticles morphology on the catalytic properties[J]. Mater Today:Proc, 2016, 3:230-234. doi: 10.1016/j.matpr.2016.01.062
    [23]
    ZHOU J C, LIN S W, CHEN Y J, GASKOV A M. Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance[J]. Appl Surf Sci, 2017, 403:274-281. doi: 10.1016/j.apsusc.2017.01.209
    [24]
    ZHANG R K, NING F Y, LEI S X, ZHOU L, SHAO M F, WEI M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting[J]. Electrochim Acta, 2018, 274:217-223. doi: 10.1016/j.electacta.2018.04.109
    [25]
    ARIENZO M D, ARMELAO L, MARI C M, POLIZZI S, RUFFO R, SCOTTI R, MORAZZONI F. Surface interaction of WO3 nanocrystals with NH3 role of the exposed crystal surfaces and porous structure in enhancing the electrical response[J]. RSC Adv, 2014, 4:11012-11022. doi: 10.1039/c3ra46726k
    [26]
    ZHANG H L, LIU Z F, Yang J Q, GUO W, ZHU L J, ZHENG W J. Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3 nanoplates[J]. Mater Res Bull, 2014, 57:260-267. doi: 10.1016/j.materresbull.2014.06.013
    [27]
    WANG J M, KHOO E, LEE P S, MA J. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte[J]. J Phys Chem C, 2009, 113:9655-9658. doi: 10.1021/jp901650v
    [28]
    JARUPAT S, TITIPUN T, SOMCHAI T. Large-scale synthesis of WO3 nanoplates by a microwave-hydrothermal method[J]. Ceram Int, 2012, 38:1051-1055. doi: 10.1016/j.ceramint.2011.08.030
    [29]
    SU X T, XIAO F, LI Y N, JIAN J K, SUN Q J, WANG J D. Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process[J]. Mater Lett, 2010, 64:1232-1234. doi: 10.1016/j.matlet.2010.02.063
    [30]
    ZHANG H, ZHAO H, JIANG Y Q, HOU S Y, ZHOU Z H, WAN H L. pH-and mol-ratio dependent tungsten(Ⅵ)/citrate speciation from aqueous solutions:syntheses, spectroscopic properties and crystal structures[J]. Inorg Chim Acta, 2003, 351:311-318. doi: 10.1016/S0020-1693(03)00177-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (219) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return