Volume 47 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
SHI Heng, LUO Jing, PU Yan-feng, WANG Feng, LI Feng, CHEN Zhi-wen, SONG Quan-bin, XIAO Fu-kui, ZHAO Ning. One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1386-1393.
Citation: SHI Heng, LUO Jing, PU Yan-feng, WANG Feng, LI Feng, CHEN Zhi-wen, SONG Quan-bin, XIAO Fu-kui, ZHAO Ning. One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1386-1393.

One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling

Funds:

the Natural Science Foundation of Shanxi Province, China 201801D121070

the State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University 2018-K11

the Science Foundation for Young Scientists of Shanxi Province, China 201701D221052

the National Natural Science Foundation of China 21776294

the National Natural Science Foundation of China 21802158

the Independent Research Project of the State Key Laboratory of Coal Conversion 2018BWZ002

More Information
  • Corresponding author: XIAO Fu-kui, E-mail:xiaofk@sxicc.ac.cn; ZHAO Ning, Fax:+86-351-4041153, E-mail:zhaoning@sxicc.ac.cn
  • Received Date: 2019-07-25
  • Rev Recd Date: 2019-10-08
  • Available Online: 2021-01-23
  • Publish Date: 2019-11-10
  • A series of CeO2-ZrO2 solid solutions with different Ce/Zr molar ratios were synthesized by one-pot evaporation-induced self-assembly (EISA) method and characterized by XRD, Raman spectroscopy, H2-TPR, XPS, SEM and N2 sorption. The catalytic activity of CeO2-ZrO2 solid solutions in the thermochemical splitting of CO2 to CO were investigated by thermogravimetric analysis. The results reveal that with the increase of Ce/Zr molar ratio, the catalytic activity of CeO2-ZrO2 in CO2 splitting increases first and then decreases. The Ce0.5Zr0.5O2 solution with a Ce/Zr molar ratio of 1 exhibits high activity in CO2 splitting, owing to its abundant lattice defects and oxygen vacancies which can promote the oxygen migration. In contrast, the Ce0.75Zr0.25O2 solution with a Ce/Zr molar ratio of 3 shows the best cyclic stability, due to its relatively stable number of oxygen vacancies. Sintering of particles was observed after the cycling reaction, accompanying with the phase separation in the Zr-rich solid solutions, which may influence the catalytic performance of CeO2-ZrO2 solid solutions in the CO2 splitting.
  • loading
  • [1]
    CHUEH W C, STEINFELD A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012):1797-1801. doi: 10.1126/science.1197834
    [2]
    MARXER D, FURLER P, TAKACS M, STEINFELD A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy Environ Sci, 2017, 10(5):1142-1149. doi: 10.1039/C6EE03776C
    [3]
    CHUEH W C, HAILE S M. A thermochemical study of ceria:Exploiting an old material for new modes of energy conversion and CO2 mitigation[J]. Philos Trans A:Math Phys Eng Sci, 2010, 368(1923):3269-3294. doi: 10.1098/rsta.2010.0114
    [4]
    FURLER P, SCHEFFE J R, STEINFELD A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy Environ Sci, 2012, 5(3):6098-6103. doi: 10.1039/C1EE02620H
    [5]
    SCHEFFE J R, STEINFELD A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2:A review[J]. Mater Today, 2014, 17(7):341-348. doi: 10.1016/j.mattod.2014.04.025
    [6]
    KANG M, WU X, ZHANG J, ZHAO N, WEI W, SUN Y. Enhanced thermochemical CO2 splitting over Mg-and Ca-doped ceria/zirconia solid solutions[J]. RSC Adv, 2014, 4(11):5583-5590. doi: 10.1039/c3ra45595e
    [7]
    STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions†[J]. Chem Mater, 2010, 22(3):851-859. doi: 10.1021/cm9016529
    [8]
    ABANADES S, CHAMBON M. CO2 dissociation and upgrading from two-step solar thermochemical processes based on ZnO/Zn and SnO2/SnO redox pairs[J]. Energy Fuels, 2010, 24(12):6667-6674. doi: 10.1021/ef101092u
    [9]
    DEY S, NAIDU B S, GOVINDARAJ A, RAO C N R. Noteworthy performance of La1-xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2[J]. Phys Chem Chem Phys, 2015, 17(1):122-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cc14340194b06acdfa0730916c654c6
    [10]
    MCDANIEL A H, MILLER E C, ARIFIN D, AMBROSINI A, COKER E N, O'HAYRE R, CHUEH W C, TONG J. Sr- and Mn- doped LaAlO3-δ for solar thermochemical H2 and CO production[J]. Energy Environ Sci, 2013, 6(8):2424-2428. doi: 10.1039/c3ee41372a
    [11]
    GAL A L, ABANADES S, FLAMANT G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions[J]. Energy Fuels, 2011, 25(10):4836-4845. doi: 10.1021/ef200972r
    [12]
    ARIFIN D, WEIMER A W. Kinetics and mechanism of solar-thermochemical H2 and CO production by oxidation of reduced CeO2[J]. Sol Energy, 2018, 160:178-185. doi: 10.1016/j.solener.2017.11.075
    [13]
    ZHAO B, HUANG C, RAN R, WU X, DUAN W. Two-step thermochemical looping using modified ceria-based materials for splitting CO2[J]. J Mater Sci, 2016, 51(5):2299-2306. doi: 10.1007/s10853-015-9534-7
    [14]
    ABANADES S, LEGAL A, CORDIER A, PERAUDEAU G, FLAMANT G, JULBE A. Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting[J]. J Mater Sci, 2010, 45(15):4163-4173. doi: 10.1007/s10853-010-4506-4
    [15]
    JIANG Q, ZHOU G, JIANG Z, LI C. Thermochemical CO2 splitting reaction with CexM1-xO2-δ (M=Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions[J]. Sol Energy, 2014, 99(99):55-66. doi: 10.1016/j.solener.2013.10.021
    [16]
    JACOT R, MORE R, MICHALSKY R, STEINFELD A, PATZKE G R. Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals[J]. J Mater Chem A, 2017, 5(37):19901-19913. doi: 10.1039/C7TA04063F
    [17]
    ABANADES S, GAL A L. CO2 splitting by thermo-chemical looping based on ZrxCe1-xO2 oxygen carriers for synthetic fuel generation[J]. Fuel, 2012, 102(6):180-186. doi: 10.1016/j.fuel.2012.06.068
    [18]
    PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011, 115(43):21022-21033. doi: 10.1021/jp2071315
    [19]
    SHI H, LUO J, WANG F, PU Y, YANG J, XIAO F, ZHAO N, SONG Q, CHEN Z. Synthesis of CeO2-ZrO2 solid solutions for thermochemical CO2 splitting[J]. Energy Technol-Ger, 2019, 7(4):1800890. doi: 10.1002/ente.201800890
    [20]
    ALIFANTI M, BAPS B, BLANGENOIS N, NAUD J, GRANGE P, DELMON B. Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and Sol-Gel preparation methods[J]. Chem Mater, 2003, 15(2):395-403.
    [21]
    KUHN M, BISHOP S R, RUPP J L M, TULLER H L. Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1-xZrxO2-δ) solid solutions[J]. Acta Mater, 2013, 61(11):4277-4288. doi: 10.1016/j.actamat.2013.04.001
    [22]
    L PEZ E F, ESCRIBANO V S, PANIZZA M, CARNASCIALI M M, BUSCA G. Vibrational and electronic spectroscopic properties of zirconia powders[J]. J Mater Chem, 2001, 11(11):1891-1897. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc42945e9134d36e1059f6b64eebc311
    [23]
    REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 And V2O5/CeO2-TiO2 catalysts by raman and XPS techniques[J]. J Phys Chem B, 2003, 107(22):5162-5167. doi: 10.1021/jp0344601
    [24]
    PRUSTY D, PATHAK A, MUKHERJEE M, MUKHERJEE B, CHOWDHURY A. TEM and XPS studies on the faceted nanocrystals of Ce0.8Zr0.2O2[J]. Mater Charact, 2015, 100:31-35. doi: 10.1016/j.matchar.2014.12.009
    [25]
    MOULDER J F, STICKLE W F, SOBOL P E, BOMBEN K D, CHASTAIN J, KING R C. Handbook of X-Ray Photoelectron Spectroscop[M]. Perkin-Elmer Corp:Eden Prairie, MN, 1979.
    [26]
    SHINDE S S, RAJPURE K Y. X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films[J]. J Alloy Compd, 2011, 509(13):4603-4607. doi: 10.1016/j.jallcom.2011.01.117
    [27]
    TROVARELLI A, ZAMAR F, LLORCA J, LEITENBURG C D, DOLCETTI G, KISS J T. Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling[J]. J Catal, 1997, 169(2):490-502. doi: 10.1006/jcat.1997.1705
    [28]
    FALLY F, PERRICHON V, VIDAL H, KASPAR J, BLANCO G, PINTADO J M, BERNAL S, COLON G, DATURI M, LAVALLEY J C. Modification of the oxygen storage capacity of CeO2 -ZrO2 mixed oxides after redox cycling aging[J]. Catal Today, 2000, 59(3):373-386. doi: 10.1016-S0920-5861(00)00302-3/
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (176) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return