Volume 48 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1270-1280.
Citation: LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1270-1280.

Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution

Funds:

The National Natural Science Foundation of China 21902127

More Information
  • Corresponding author: JIANG Bin, E-mail:jb1987@nwu.edu.cn
  • Received Date: 2020-07-29
  • Rev Recd Date: 2020-09-07
  • Available Online: 2021-01-23
  • Publish Date: 2020-10-10
  • Carbon nanofibers (CNFs) were synthesized by ethanol catalytic combustion method and FeCoNiB was loaded on the CNFs by electroless plating (chemical deposition) method. The effect of electroless plating condition on the particle size, dispersion, composition and structure of FeCoNiB was then investigated, to establish the process for the controllable synthesis of carbon nanofibers with plated FeCoNiB (FeCoNiB/CNFs). In addition, the electrocatalytic performance of FeCoNiB/CNFs was evaluated for the hydrogen evolution reaction (HER) in alkaline environment. The results illustrate that the FeCoNiB/CNFs shows a low overpotential of 366 mV at 100 mA/cm2 and a quite low Tafel slope value of 41 mV/dec, as well as a stable potential without attenuation during the stability test for 10 h, displaying a stable and high catalytic performance that is comparable to that of noble metal catalysts. This study is probably helpful for the development of efficient non-noble metal catalyst for HER as well as the application of large-scale electrolytic water hydrogen production in industry.
  • loading
  • [1]
    梁馨元, 施筱萱, 赵悦君.电催化析氢反应及析氢催化剂研究进展[J].化工管理, 2019, (7):68-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hggl201907045

    LIANG Xin-yuan, SHI You-xuan, ZHAO Yue-jun. Research progress of electrocatalytic hydrogen evolution reaction and hydrogen evolution catalyst[J]. Chem Ent Manage, 2019, (7):68-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hggl201907045
    [2]
    赵永志, 蒙波, 陈霖新, 王赓, 郑津洋, 顾超华, 张鑫, 张俊峰.氢能源的利用现状分析[J].化工进展, 2015, 34(9):3248-3255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201509008

    ZHAO Yong-zhi, MENG Bo, CHEN Lin-xin, WANG Geng, ZHENG Jin-yang, GU Chao-hua, ZHANG Xin, ZHANG Jun-feng. Analysis of utilization status of hydrogen energy[J]. Chem Ind Eng Prog, 2015, 34(9):3248-3255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201509008
    [3]
    ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Hydrogen storage on boron substituted carbon materials[J]. Int J Hydrogen Energy, 2016, 41(5):3527-3536. doi: 10.1016/j.ijhydene.2015.12.169
    [4]
    佟珊珊, 王雪靖, 李庆川, 韩晓军.基于碳纤维材料基底的电解水制氢催化剂的研究进展[J].分析化学, 2016, 44(9):1447-1457. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201609022

    TONG Shan-shan, WANG Xue-jing, LI Qing-chuan, HAN Xiao-jun. Research progress of hydrogen production catalysts based on carbon fiber materials[J]. Chin J Anal Chem, 2016, 44(9):1447-1457. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201609022
    [5]
    ZHANG J, ZHANG D, YANG Y, MA J, CUI S, LI Y, YUAN B. Facile synthesis of ZnCo2O4 mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties[J]. RSC Adv, 2016, 6(95):92699-92704. doi: 10.1039/C6RA14191A
    [6]
    SATHE B R, ZOU X, ASEFA T. Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction[J]. Catal Sci Technol, 2014, 4(7):2023-2030. doi: 10.1039/C4CY00075G
    [7]
    ZHU Q, QIU B, DU M, XING M, ZHANG J. Nickel boride cocatalyst boosting efficient photocatalytic hydrogen evolution reaction[J]. Ind Eng Chem Res, 2018, 57(24):8125-8130. doi: 10.1021/acs.iecr.8b01376
    [8]
    GUPTA S, PATEL N, MIOTELLO A, KOTHARI D C. Cobalt-boride:an efficient and robust electrocatalyst for hydrogen evolution reaction[J]. J Power Sources, 2015, 279:620-625. doi: 10.1016/j.jpowsour.2015.01.009
    [9]
    XU X, DENG Y, GU M, SUN B, LIANG Z, XUE Y, GUO Y, TIAN J, CUI H. Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst[J]. Appl Surf Sci, 2019, 470:591-595. doi: 10.1016/j.apsusc.2018.11.127
    [10]
    LI H, WEN P, LI Q, DUN C, XING J, ADHIKARI S, JIANG L, CARROLL D L, GEYER S M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting[J]. Adv Energy Mater, 2017, 7(17):1700513. doi: 10.1002/aenm.201700513
    [11]
    HAO W, WU R, ZHANG R, HA Y, CHEN Z, WANG L, YANG Y, MA X, SUN D, FANG F, GUO Y. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting[J]. Adv Energy Mater, 2018, 8(26):1801372. doi: 10.1002/aenm.201801372
    [12]
    李恩重, 杨大祥, 郭伟玲, 周新远, 王海斗, 徐滨士.碳纳米纤维的制备及其复合材料在军工领域的应用[J].材料导报, 2011, 25(S2):188-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000003011233

    LI En-chong, YANG Da-xiang, GUO Wei-ling, ZHOU Xin-yuan, WANG Hai-dou, XU Bin-shi. Preparation of carbon nanofibers and application of their composites in military industry[J]. Mater Rep, 2011, 25(S2):188-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000003011233
    [13]
    DÍAZ J A, MARTÍNEZ F M, ROMERO A, VALVERDE J L. Synthesis of carbon nanofibers supported cobalt catalysts for Fischer-Tropsch process[J]. Fuel, 2013, 111:422-429. doi: 10.1016/j.fuel.2013.04.003
    [14]
    王赫, 王洪杰, 王闻宇, 金欣, 林童.聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J].材料导报, 2018, 32(5):730-734+748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201805007

    WANG He, WANG Hong-jie, WANG Wen-yu, JIN Xin, LIN Tong. Application of polyacrylonitrile based carbon nanofibers as electrode materials for supercapacitors[J]. Mater Rep, 2018, 32(5):730-734+748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201805007
    [15]
    SHENG M, WU Q, WANG Y, LIAO F, ZHOU Q, HOU J, WENG W. Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution[J]. Electrochem Commun, 2018, 93:104-108. doi: 10.1016/j.elecom.2018.06.017
    [16]
    NELIZE M A C, JOMAR L B F, CUONG P H, RICARDO V. Carbon nanofibers:A versatile catalytic support[J]. Mater Res Ibero Am J, 2008, 11(3):353-357. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392008000300020
    [17]
    VICENTE J, PARASKEVI P, PAULA S, JOSÉ L V, AMAYA R. Synthesis and characterization of ruthenium supported on carbon nanofibers with different graphitic plane arrangements[J]. Chem Eng J, 2011, 168(2):947-954. doi: 10.1016/j.cej.2011.02.024
    [18]
    程进.乙醇作为碳源制备准一维碳纳米结构材料的研究[D].北京: 信息工程学院传感技术研究中心, 2007.

    CHENG Jin. Preparation of quasi one dimensional carbon nanostructured materials using ethanol as carbon source[D]. Beijing: Sensing Technology Research Center of Information Engineering Institute, 2007.
    [19]
    ZHI W S, JAKOB K, COLIN F D, IB C, JENS K N, THOMAS F J. Combining theory and experiment in electrocatalysis:Insights into materials design[J]. Science, 2017, 355(6321):eaad4998. doi: 10.1126/science.aad4998
    [20]
    GUPTA S, PATEL N, FERNANDES R, KADREKAR R. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range[J]. Appl Catal B:Gnviron, 2016, 192:126-133. doi: 10.1016/j.apcatb.2016.03.032
    [21]
    CARLOS D R, ABEL H M, ROAL T S, MANUEL A R, JES'US G H. Measurement of mechanical properties of an electroless Ni-B coating using nanoindentation[J]. Ind Eng Chem Res, 2012, 51(22):7762-7768. doi: 10.1021/ie201760g
    [22]
    ZHANG L, LI S, TAN H, KHAN S U, MA Y, ZANG H, WANG Y, LI Y. MoP/Mo2C@C:A new combination of electrocatalysts for highly efficient hydrogen evolution over the entire pH range[J]. ACS Appl Mater Interfaces, 2017, 9(19):16270-16279. doi: 10.1021/acsami.7b03823
    [23]
    HOA V H, TRAN D T, LE T H, KIM H N, LEE H J. Hierarchically porous nickel-cobalt phosphide nanoneedle arrays loaded micro-carbon spheres as an advanced electrocatalyst for overall water splitting application[J]. Appl Catal B Gnviron, 2019, 253:235-245. doi: 10.1016/j.apcatb.2019.04.017
    [24]
    HUANG W, WANG F, QIU N, WU X, ZANG C, LI A, XU L. Enteromorpha prolifera-derived Fe3C/C composite as advanced catalyst for hydroxyl radical generation and efficient removal for organic dye and antibiotic[J]. J Hazard Mater, 2019, 378:120728. doi: 10.1016/j.jhazmat.2019.06.005
    [25]
    MASA J, SINEV I, MISTRY H, VENTOSA E, MATA M, ARBIOL J, MUHLER M, CUENYA B R, SCHUHMANN W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution[J]. Adv Energy Mater, 2017, 7(17):1700381. doi: 10.1002/aenm.201700381
    [26]
    AN L, SUN Y, ZONG Y, LIU Q, GUO J, ZHANG X. Nickel iron boride nanosheets on rGO for active electrochemical water oxidation[J]. J Solid State Chem, 2018, 265:135-139. doi: 10.1016/j.jssc.2018.05.039
    [27]
    FAN X, PENG Z, YE R, ZHOU H, GUO X. M3C (M:Fe, Co, Ni) nanocrystals encased in graphene nanoribbons:an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(7):7407-7418. doi: 10.1021/acsnano.5b02420
    [28]
    SUN J, ZHANG W, WANG S, REN Y, LIU Q, SUN Y, TANG L, GUO J, ZHANG X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution[J]. J Alloys Compd, 2019, 776:511-518. doi: 10.1016/j.jallcom.2018.10.296
    [29]
    ZHOU C, MU J, QI Y, WANG Q, ZHAO X, YANG E. Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction[J]. Int J Hydrogen Energy, 2019, 44(16):8156-8165. doi: 10.1016/j.ijhydene.2019.02.053
    [30]
    THIRUMAL V, PANDURANGAN A, JAYAVEL R, ⅡANGOVAN R. Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications[J]. Synth Met, 2016, 220:524-532. doi: 10.1016/j.synthmet.2016.07.011
    [31]
    SAHOO M, SREENA K. P, VINAYAN B. P, RAMAPRABHU S. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Mater Res Bull, 2015, 61:383-390. doi: 10.1016/j.materresbull.2014.10.049
    [32]
    HE J, WU T, CHEN S, MIAO R, SUIB S L. Structure-property relationship of graphene coupled metal (Ni, Co, Fe) (oxy)hydroxides for efficient electrochemical evolution of oxygen[J]. J Catal, 2019, 377:619-628. doi: 10.1016/j.jcat.2019.08.006
    [33]
    MASA J, WEIDE P, PEETERS D, SINEV I, XIA Wei, SUN Zhen-yu, SOMSEN C, MUHLER M, SCHUHMANN W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting:oxygen and hydrogen evolution[J]. Adv Energy Mater, 2016, 6(6):1502313. doi: 10.1002/aenm.201502313
    [34]
    LI C, ZHANG Z, WU M, LIU R. FeCoNi ternary alloy embedded mesoporous carbon nanofiber:an efficient oxygen evolution catalyst for rechargeable zinc-air battery[J]. Mater Lett, 2019, 238:138-142. doi: 10.1016/j.matlet.2018.11.160
    [35]
    WANG J, ZHANG W, ZHENG Z, LIU J, YU C, CHEN Y, MA K. Dendritic core-shell Ni@Ni(Fe)OOH metal/metal oxyhydroxide electrode for efficient oxygen evolution reaction[J]. Appl Surf Sci, 2019, 469:731-738. doi: 10.1016/j.apsusc.2018.10.232
    [36]
    LU M, WANG L, JIANG B, ZHENG J. An efficient electrocatalyst by electroless cobalt-nickel-phosphorus alloy plating on three-dimensional graphene for hydrogen evolution reaction[J]. J Electrochem Soc, 2019, 166(2):D69-D76. doi: 10.1149/2.1261902jes
    [37]
    XU J, LI J, XIONG D, ZHANG B, LIU Y, WU K H, AMORIM I, LI W, LIU L. Trends in activity for the oxygen evolution reaction on transition metal (M=Fe, Co, Ni) phosphide pre-catalysts[J]. Chem Sci, 2018, 9(14):3470-3476. doi: 10.1039/C7SC05033J
    [38]
    NACHIMUTHU S, LAI P J, JIANG J C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study[J]. Carbon, 2014, 73:132-140. doi: 10.1016/j.carbon.2014.02.048
    [39]
    SANKARAN M, VISWANATHAN B, MURTHY S. Boron substituted carbon nanotubes-How appropriate are they for hydrogen storage?[J]. Int J Hydrogen Energy, 2008, 33(1):393-403. doi: 10.1016/j.ijhydene.2007.07.042
    [40]
    SURYANTO B H R, WANG Yun, HOCKING R K, ADAMSON W, ZHAO C. Overall electrochemical splitting of water at the heteroge-neous interface of nickel and iron oxide[J]. Nat Commun, 2019, 10:5599-5609. doi: 10.1038/s41467-019-13415-8
    [41]
    TIAN Y, YE Y, WANG X, PENG S, WEI Z, ZHANG X, LIU W. Three-dimensional N-doped, plasma-etched graphene:Highly active metal-free catalyst for hydrogen evolution reaction[J]. Appl Catal A:Gen, 2017, 529:127-133. http://www.sciencedirect.com/science/article/pii/S0926860X16305166
    [42]
    SHINAGAWA T, GARCIA E A T, TAKANABE K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Sci Rep, 2015, 5:13801. doi: 10.1038/srep13801
    [43]
    曹楚南.腐蚀电化学原理[M]. 3版.北京:化学工业出版社, 2008.

    CAO Chu-nan. Principle of Corrosion Electrochemistry[M]. 3rd ed. Beijing:Chemical Industry Press, 2008.
    [44]
    MAO H, GUO X, FU Y, YANG H, ZHANG Y, ZHANG R, SONG X. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide[J]. J Mater Chem A, 2020, 8(4):1821-1828. doi: 10.1039/C9TA10756H
    [45]
    QU K, ZHENG Y, ZHANG X, DAVEY K, DAI S, QIAO S. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms[J]. ACS Nano, 2017, 11(7):7293-7300. doi: 10.1021/acsnano.7b03290
    [46]
    GARCÍA O D A, JAIMES R, VAZQUEZ A J, LARA R H. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions:·OH formation[J]. J Electrochem Soc, 2017, 164(11):E3321-E3328. doi: 10.1149/2.0321711jes
    [47]
    NSANZIMANA J M V, DANGOL R, REDDU V, DOU S, PENG Y, DINH K N, HUANG Z, YAN Q, WANG X. Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity[J]. ACS Appl Mater Interfaces, 2019, 11(1):846-855. doi: 10.1021/acsami.8b17836
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return