Mechanism of heterogeneous reduction of NO over graphite-supported single-atom Fe catalyst: DFT study
-
Graphical Abstract
-
Abstract
The mechanism of nitrogen oxide (NO) reduction over graphite carbon-supported single-atom iron (Fe) catalyst (Fe/G) was investigated by density functional theory (DFT) and transition state theory (TST). The catalyst deactivation was also analyzed. The results revealed that the NO reduction, based on the Eley-Rideal (E-R) mechanism, underwent four stages including N2O formation and release as well as N2 formation and release. However, the NO reduction only involved two stages according to Langmuir-Hinshelwood (L-H) mechanism: N2 formation and release. Furthermore, for the E-R mechanism, the rate-controlling step was NO reduction, where a NO molecule was adsorbed on an Fe atom with an N, O-down structure with energy barrier of 15.5 kJ/mol, lower than that of other paths. Energy barrier analysis indicated that the energy barrier for the reduction of reactive oxygen species was higher than that for the formation of N2. Reactive oxygen species remaining on the surface of Fe atoms after NO decomposition inhibited the adsorption and reduction of NO, leading to catalyst deactivation due to the absence of active sites. The single-atom Fe species promoted the NO reduction. Kinetic analysis results suggested that, upon increasing the reaction temperature, the NO reduction rate increased more significantly than the reactive oxygen transfer rate.
-
-