WANG Han, GUO Shujia, QIN Zhangfeng, LI Zhikai, WANG Guofu, DONG Mei, FAN Weibin, WANG Jianguo. A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation[J]. Journal of Fuel Chemistry and Technology. DOI: 10.1016/S1872-5813(24)60449-4
Citation: WANG Han, GUO Shujia, QIN Zhangfeng, LI Zhikai, WANG Guofu, DONG Mei, FAN Weibin, WANG Jianguo. A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation[J]. Journal of Fuel Chemistry and Technology. DOI: 10.1016/S1872-5813(24)60449-4

A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation

  • The synthesis of methane from CO and CO2 by hydrogenation is now considered as a promising route in effectively storing hydrogen energy as well as sustainably producing fuels and chemicals, while many reaction details involved in such processes, in particular for the hydrogenation of the CO and CO2 mixture, are not yet adequately understood. As a supplement to our previous works on the hydrogenation of CO and CO2 into alcohols and hydrocarbons, a thermodynamic consideration is made in this work to evaluate the potential and limit for the synthesis of methane from CO, CO2, and their mixture in particular. The results consolidate that in comparison with single CO or CO2, their mixture is probably more credible in practice for the production of methane by hydrogenation, where the overall C-based methane yield can be used as the major index to evaluate the process efficiency. The hydrogenation of CO shows a higher equilibrium yield of methane than the hydrogenation of CO2, while the overall C-based equilibrium yield of methane for the hydrogenation of the CO and CO2 mixture just lies in between and decreases almost lineally with the increase of the CO2/(CO+CO2) molar ratio in the feed, despite the great change in the equilibrium conversions of CO and CO2 with the feed composition. Nevertheless, an adequate overall C-based equilibrium yield of methane (> 85%) can be achieved at a temperature lower than 400 ℃ and a pressure higher than 0.1 MPa for the stoichiometric hydrogenation of CO, CO2, or their mixture whichever. These results should be beneficial to the design of more efficient catalysts and processes for the hydrogenation of CO and CO2 to methane.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return