WO3 enhanced surface acidity of RuO2/ZrO2 and its performance in selective catalytic oxidation of NH3
-
Graphical Abstract
-
Abstract
In this paper, RuO2/ZrO2 catalyst and WO3 doped RuO2/WO3-ZrO2 catalysts with different WO3 loadings were designed and prepared for selective catalytic oxidation of ammonia. Among the catalysts, RuO2/ZrO2 catalyst exhibits excellent catalytic activity but poor N2 selectivity. It is worth noting that the activity of RuO2/ZrO2 catalyst remains unchanged after 5% or 10% WO3 doping, while the N2 selectivity at high temperature is significantly improved, and NH3 is completely transformed at 225 ℃. However, when WO3 content rises to 15% and 20%, the catalytic activity of RuO2/ZrO2 catalyst decreases slightly, while N2 selectivity is not further improved at high temperature. Therefore, it can be judged that the optimal WO3 content is 10%. In addition, it is found that WO3 doping can change the microstructure of the catalyst and the corresponding specific surface area increases with the increase of WO3 content through BET analysis. XRD, H2-TPR and XPS show that WO3 doping can change the crystal structure of ZrO2, increase the stability of the catalyst. According to the DRIFT spectra results, as WO3 is doped into the catalyst, the amount of surface acid sites on the catalyst increase. More surface acid sites can facilitate the adsorption of ammonia species, inhibit the rapid reaction between ammonia and oxygen, and avoid formation of more by-products, which are the key factors to improve the N2 selectivity.
-
-