Study on the mercury removal performance and strengthening method of high sulfur and iron content textile dyeing sludge char
-
Graphical Abstract
-
Abstract
Pyrolysis char was prepared from high sulfur and iron content textile dyeing sludge. The combined states of S and Fe in the samples before and after pyrolysis and the removal characteristics of Hg0 by pyrolysis char were studied. The performance of Hg0 removal was improved by air oxidation and ZnCl2 impregnation. The results showed that S in sludge was divided into sulfate, sulfide, and organic sulfur. Fe existed as Fe3+ and Fe2+ compounds. After pyrolysis, inorganic sulfur was transferred to organic sulfur and Fe3+ was transferred to Fe2+. Most S and Fe were retained in pyrolysis char and some formed pyrrhotite (Fe1−xS). The specific surface area of raw char was small and had a certain Hg0 removal capacity, dominated by chemical adsorption. When the air oxidation time was controlled within 12 h, the Hg0 adsorption capacity of pyrolysis char at high temperature (≥600 ℃) was increased by more than 46%. During pyrolysis of ZnCl2 impregnated sludge, more S was fixed in pyrolysis char to generate ZnS. The Hg0 adsorption capacity of ZnCl2 modified char pyrolyzed at 600 ℃ reached 28.71 μg/g in 30 min. With air oxidation, the Hg0 removal efficiency was further improved. After oxidation for 12 h, the Hg0 adsorption capacity was 43.75 μg/g.
-
-