Improved coking resistance of direct methane solid oxide fuel cell with Ni-BZCYYb anode
-
Graphical Abstract
-
Abstract
Solid oxide fuel cell (SOFC) is a promising power-generation device. Direct operation of SOFC on methane has several important advantages, such as simple system, high efficiency and low emissions. The challenge of the state-of-the-art nickel cermet anode is prone to coke formation when operating on methane, which may cause rapidly deteriorate of the performance and durability on SOFC. In this work, the anode Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) was investigated for wet methane (97% CH4-3% H2O) conversion in the temperature range of 700 to 600 ℃. The Ni-BZCYYb anode showed a good electrochemical performance for the steam reforming of methane. Furthermore, under a constant current density, a good operational stability was achieved at 600 ℃ for 100 h operating. For comparison, a conventional Ni-YSZ anode was also prepared, the voltage of cell dropped to zero after feeding wet CH4 for ~ 6 h. These results indicate that the Ni-BCZYYb is a good candidate as the anode in SOFC on methane fuel.
-
-