LIU Zi-song, WEI Yong-gang, LI Kong-zhai, WANG Hua, ZHU Xing, DU Yun-peng. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane: Influence of Fe2O3 loadings and preparation methods[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1384-1392.
Citation: LIU Zi-song, WEI Yong-gang, LI Kong-zhai, WANG Hua, ZHU Xing, DU Yun-peng. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane: Influence of Fe2O3 loadings and preparation methods[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1384-1392.

Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane: Influence of Fe2O3 loadings and preparation methods

  • A series of Fe2O3/Al2O3 oxygen carriers with different Fe2O3 loading were prepared by different methods and characterized by means of XRD, H2-TPR, CH4-TPR, O2-TPD and BET technologies. The effects of the preparation methods on the Fe2O3/Al2O3 oxygen carrier structure, activity and the selectivity for CO2 were also investigated. An obvious effect of Fe2O3 loading on the reactivity for methane oxidation and the CO2 selectivity is observed. Lower Fe2O3 loading results in a lower reactivity of oxygen carrier and more CO content in the product gas. The reactivity of Fe2O3/Al2O3 is also affected by the preparation method of oxygen carrier. The Fe2O3/Al2O3 oxygen carrier with a Fe2O3 loading of 60% (mass ratio) has the best activity and redox stability for methane oxidation. Methane can be quickly converted to CO2 and H2O with higher selectivity at 850℃ for 15 min. After redox cycling in alternant methane/air atmosphere for 30 times, no decline in the conversion of methane and the formation of CO2 is observed.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return