LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 985-992.
Citation: LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 985-992.

Effect of CO2 in syngas on methanation performance of Mo-based catalyst

  • The methanation of synthesis gas is the key process of coal to natural gas. Considering the existence of CO2 in the synthesis gas, it is important to investigate the influence of CO2 on the sulfur-resistant methanation. In this paper, the effect of CO2 on methanation activity of Mo-based catalysts was investigated at the reaction temperature of 550℃ and the gas space velocity of 5000h-1 with the syngas containing 1.2% H2S (volume ratio). The results show that the promoter Co and the cerium-aluminum composite support can improve the stability of the catalyst and reduce the deactivation. The CO2 is proved to promote the reverse water gas shift reaction, which would inhibit the activity of MoO3/Al2O3 catalyst more heavily than MoO3-CoO/CeO2-Al2O3 catalyst. When the CO2 adding to the inlet gas is less than 10% for 20h, the catalyst activity could be restored to its original activity after stopping the addition of CO2. However, as the added CO2 in inlet gas is over 10%, more H2O will be generated through reverse water gas shift reaction to damage the catalyst structure and decrease the active component, resulting in an irreversible loss of catalyst activity.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return