Effect of phase transformation of La2Zr2O7 catalysts on catalytic performance for the oxidative coupling of methane
-
Graphical Abstract
-
Abstract
La2Zr2O7 catalyst was prepared using co-precipitation method and then calcined at different temperatures to obtain a series of catalysts with different phase structures. Their catalytic performances for oxidative coupling of methane were evaluated in a fixed bed micro-reactor. Meanwhile, the changes of phase structure, surface base sites and surface oxygen species upon these samples were characterized with XRD, Raman, CO2-TPD, and XPS. With the increase of the calcination temperature from 700 to 1200℃, the crystallinity of La2Zr2O7 catalysts increased continuously and the crystal phase changed obviously. The structure of the catalysts gradually changed from amorphous to disordered defective fluorite structure, and ultimately to phrochlore structure. Both the number of medium basic sites and the electrophilic oxygen species, such as O22- and O2-, on the catalysts decreased with the phase transition caused by the temperature raising, resulting in the decrease of CH4 conversion and C2+ selectivity. The amorphous LZO-CP-700 catalyst showed the best performance in methane oxidation coupling reaction.
-
-