ZHAO Hui-ming, JIA Ting-hao, WANG Mei-jun, BAO Wei-ren, CHANG Li-ping. Upgrading of Zhaotong coal by pyrolysis and its effect on the gasification reactivity[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 904-910.
Citation: ZHAO Hui-ming, JIA Ting-hao, WANG Mei-jun, BAO Wei-ren, CHANG Li-ping. Upgrading of Zhaotong coal by pyrolysis and its effect on the gasification reactivity[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 904-910.

Upgrading of Zhaotong coal by pyrolysis and its effect on the gasification reactivity

  • In order to integratedly utilize the relatively rich coal resource of Zhaotong mine, temperature-programmed pyrolysis experiments of Zhaotong lignite were performed in fixed bed reactor at different temperatures. The resultant coal tar and char were characterized by GC-MS and Raman Spectroscopy, respectively. Char-H2O isothermal gasification characteristics were evaluated in fixed bed reactor at 850℃. The results show that in pyrolysis at 700℃ the cumulative content of H2, CO and CH4 in gases accounts for about 70%, and the growth rate of low calorific value of gas is the fastest, which is 90% based on the value at 500℃. A large number of phenolic compounds are generated at 500-700℃. Above 700℃ the decomposition reactions of the phenolic compounds is intensified. With the increase of pyrolysis temperatures, the apparent reaction rate of char decreases, while the molar ratio of CO2 and CO increases. The molar ratio of H2 and CO in gasification from char pyrolyzed at 700℃ was the highest.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return