YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, ZHAO Jian, LIN Ai-guo. Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1458-1467.
Citation: YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, ZHAO Jian, LIN Ai-guo. Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1458-1467.

Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalysts

  • NiMoP(x)/Al2O3 catalysts with different ethylene glycol (EG) contents were prepared by impregnating NiMoP solution containing EG into Al2O3. The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) performances of the catalysts were evaluated using dibenzothiophene (DBT) and quinoline (Q) as the model compounds. The results showed that the HDS and HDN performances of the catalysts could be improved by adding of EG when the amount of EG was low (nEG/nNi ratio value was 0, 0.5, 1, 2, 3, respectively), and the improvement of HDN performance was more obvious than HDS performance. With the increase of EG content, the activity of HDS and HDN of the catalysts was further improved. TEM and XPS analysis showed that EG was helpful to increase the stacking layer number and lamellar length of MoS2 particles in the catalysts, and with the increase of EG content, the stacking layer number and lamellar length of MoS2 particles increased. EG could improve the surface atomic concentration of Mo, but practically had no influence on the surface atomic distribution of Ni. However, EG significantly increased the sulfuration degree of Mo and Ni. TG characterization showed that EG interacted with alumina and metal active components in various ways, and there were high temperature resistant organic species interacting with active components.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return