Volume 51 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI Guo-min, HOU Ru-yuan, MAO Lu-tao, WANG Zhe, ZHANG Ke-wei, LIANG Li-ping. Fe3O4 and Fe loaded carbon matrix composite microwave absorbents by recycling of coal gasification residue[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 562-570. doi: 10.19906/j.cnki.JFCT.2022060
Citation: LI Guo-min, HOU Ru-yuan, MAO Lu-tao, WANG Zhe, ZHANG Ke-wei, LIANG Li-ping. Fe3O4 and Fe loaded carbon matrix composite microwave absorbents by recycling of coal gasification residue[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 562-570. doi: 10.19906/j.cnki.JFCT.2022060

Fe3O4 and Fe loaded carbon matrix composite microwave absorbents by recycling of coal gasification residue

doi: 10.19906/j.cnki.JFCT.2022060
Funds:  The project was supported by the National Science Foundation of China (51802212), the Natural Science Foundation of Shanxi Province (201801D221119) and the China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect (ZBKF2022030802, ZBKF2022030702).
  • Received Date: 2022-06-24
  • Accepted Date: 2022-07-14
  • Rev Recd Date: 2022-07-12
  • Available Online: 2022-07-28
  • Publish Date: 2023-04-15
  • In order to realize the effective resource utilization of coal gasification residues (CGR), the composite microwave absorbents loaded with different magnetic components were prepared through wet chemical impregnation and roasting progress, recycling of coal gasification residue as carbon-based carrier. The results showed that the main reaction involved in gradual carbothermal reduction reaction, during which the Fe2O3 and Fe3O4 were transformed into Fe. And part of high-activity carbon in CGR was consumed as well, which resulted in the poor graphitization degree of CGR composites. Benefitted from the better impedance matching and attenuation characteristic, FeCGR1000 displayed excellent microwave absorbing performance. The reflection loss value reached −25.3 dB under the coating thickness of 2.0 mm, and the effective bandwidth kept 4.0 GHz as the coating thickness remained 1.5 mm. This work not only benefitted for realizing the resource utilization of CGR, but also provided new ideas for the high additional value application for CGR.

  • loading
  • [1]
    ZHAO B, ZHAO W Y, SHAO G, FAN B B, ZHANG R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Trans,2015,44(36):15984−15993. doi: 10.1039/C5DT02715B
    [2]
    LI Z J, LIN H, DING S Q, LING H L, WANG T, MIAO Z Q, ZHANG M, ALAN M, LI Q D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon[J]. Carbon,2020,167:148−159. doi: 10.1016/j.carbon.2020.05.070
    [3]
    WANG Y, WU X M, ZHANG W Z, LUO C Y, LI J H, WANG Y J. Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances[J]. Mater Res Bull,2018,98:59−63. doi: 10.1016/j.materresbull.2017.10.004
    [4]
    ZHANG N, HUANG Y, WANG M Y. 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption[J]. Compos Part B-Eng,2018,136:135−142. doi: 10.1016/j.compositesb.2017.10.029
    [5]
    WEN S L, LIU Y, ZHAO X C, FAN Z Z. Synthesis, permeability resonance and microwave absorption of flake-assembled cobalt superstructure[J]. J Magn Magn Mater,2015,385:182−187. doi: 10.1016/j.jmmm.2015.03.027
    [6]
    邵蕊, 屠天潼, 李一伟, 杨胜林, 金俊弘, 王芳, 李光. 多孔碳纤维吸波复合材料的性能及其影响因素[J]. 功能材料与器件学报,2021,27(6):556−564.

    SHAO Rui, TU Tian-tong, LI Yi-wei, YANG Sheng-lin, JIN Jun-hong, WANG Fang, LI Guang. Microwave absorbing performance of composites filled with porous carbon fibers having different features[J]. J Funct Mater Dev,2021,27(6):556−564.
    [7]
    WANG Y H, HAN X J, XU P, LIU D W, CUI L R, ZHAO H H, DU Y C. Synthesis of pomegranate-like Mo2C@C nanospheres for efficient microwave absorption[J]. Chem Eng J,2019,372:312−320. doi: 10.1016/j.cej.2019.04.153
    [8]
    GAO F, LI Y Y, MAO L T, WANG Y K, ZHU B S, LIANG L P, LI G M, ZHANG R. Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue[J]. Mater Lett,2022,308:131168. doi: 10.1016/j.matlet.2021.131168
    [9]
    梁丽萍, 高旭洲, 高飞, 毛璐涛, 朱保顺, 力国民. 基于煤加氢气化半焦制备Ni/碳基复合吸波材料及组成优化[J]. 燃料化学学报,2022,50(7):896−903. doi: 10.19906/j.cnki.JFCT.2022001

    LIANG Li-ping, GAO Xu-zhou, GAO Fei, MAO Lu-tao, ZHU Bao-shun, LI Guo-min. Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke[J]. J Fuel Chem Technol,2022,50(7):896−903. doi: 10.19906/j.cnki.JFCT.2022001
    [10]
    赵永彬, 吴辉, 蔡晓亮, 卓锦德, 赖世耀, 刘洪刚, 井云环, 袁伟. 煤气化残渣的基本特性研究[J]. 洁净煤技术,2015,21(3):110−113. doi: 10.13226/j.issn.1006-6772.2015.03.028

    ZHAO Yong-bin, WU Hui, CAI Xiao-liang, ZHUO Jin-de, LAI Shi-yao, LIU Hong-gang, JING Yun-huan, YUAN Wei. Basic characteristics of coal gasification residual[J]. Clean Coal Technol,2015,21(3):110−113. doi: 10.13226/j.issn.1006-6772.2015.03.028
    [11]
    XU J, LIU Z H, LI Q, WANG Y B, SHAH T, AHAMD M, ZHANG Q Y, ZHANG B L. Wrinkled Fe3O4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance[J]. J Colloid Interf Sci,2021,601:397−410. doi: 10.1016/j.jcis.2021.05.153
    [12]
    JIANG S, QIAN K, YU K J, ZHOU H F, WENG Y X, ZHANG Z W. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption[J]. Chem Phys Lett,2021,779(16):138873.
    [13]
    LI C P, GE Y Q, JIANG X H, WATERHOUSE G I N, ZHANG Z M, YU L M. Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption[J]. Ceram Int,2018,44(16):19171−83. doi: 10.1016/j.ceramint.2018.06.264
    [14]
    WANG L, DU Z, BAI X Y, LIN Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption[J]. J Colloid Interf Sci,2021,591:76−84. doi: 10.1016/j.jcis.2021.01.090
    [15]
    WANG L, WEN B, YANG H, QIU H, HE N. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber[J]. Compos Part A,2020,135:105958. doi: 10.1016/j.compositesa.2020.105958
    [16]
    LI G M, MAO L T, ZHU B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. Novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8(40):14238−14245.
    [17]
    ZHOU X F, JIA Z R, FENG A L, WANG X X, LIU J J, ZHANG M, CAO H J, WU G L. Synthesis of fish skin-derived 3d carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Carbon,2019,152:827−836. doi: 10.1016/j.carbon.2019.06.080
    [18]
    LI J S, XIE Y Z, LU W B, CHOU T W. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J]. Carbon,2018,129:76−84. doi: 10.1016/j.carbon.2017.11.094
    [19]
    MAO L T, Li L X, LIANG L P, GAO F, ZHU B S, WANG Y K, ZHANG R, LI G M. Magnetic carbon composites derived from coal hydrogasification residue for microwave absorption[J]. Phys Status Solidi A,2022,219(14):2200152. doi: 10.1002/pssa.202200152
    [20]
    WANG F, Gu W Y, Chen J B, HUANG Q Q, HAN M Y, WANG G H, JI G B. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption[J]. J Mater Sci Technol,2022,105:92−100. doi: 10.1016/j.jmst.2021.06.058
    [21]
    LIU P B, WANG Y, ZHANG G Z, HUANG Y, ZHANG R X, LIU X H, ZHANG X F, CHE R C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction[J]. Adv Funct Mater,2022,32(33):2202588. doi: 10.1002/adfm.202202588
    [22]
    WU L H, LIU X, WAN G P, PENG X G, HE Z Y, SHI S H, WANG G Z. Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers[J]. Chem Eng J,2022,448:137600. doi: 10.1016/j.cej.2022.137600
    [23]
    ZHOU M F, XU X F, WAN G P, MOU P P, TENG S J, WANG G Z. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers[J]. Nano Res,2022,15(10):8677−8687. doi: org/10.1007/s12274-022-4521-1
    [24]
    ZHANG R X, WANG L, Xu C Y, LIANG C Y, LIU X H, ZHANG X F, CHE R C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency[J]. Nano Res,2022,15(7):6743−6750. doi: 10.1007/s12274-022-4401-8
    [25]
    CHEN K Y, GUPTA S, TAI N H. Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites[J]. Compos Commun,2021,23:100572. doi: 10.1016/j.coco.2020.100572
    [26]
    QU J S, ZHANG J B, LI H Q, LI S P. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation[J]. Sci Total Environ,2021,801:149761. doi: 10.1016/j.scitotenv.2021.149761
    [27]
    WU Y H, XUE K, MA Q L, MA T, MA Y L, SUN Y G, JI W X. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous Mesoporous Mater,2020,312(2):110742.
    [28]
    JI W X, ZHANG S Y, ZHAO P D, ZHANG S S, FENG N, LAN L P, ZHANG X G, SUN Y G, LI Y Y, MA Y L. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong, China[J]. Appl Sci,2020,10(8):2694. doi: 10.3390/app10082694
    [29]
    AI W D, ZHANG J P, ZHANG J Y, MIAO S D, WEI C D. Mechanical properties and morphology of coal gasification fine slag glass bead-filled acrylonitrile-butadiene-styrene (ABS) composites[J]. J Appl Polym Sci,2020,137(17):48601. doi: 10.1002/app.48601
    [30]
    YING T P, ZHANG J, LIU X G, YU J H, YU J Y, ZHANG X F. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application[J]. J Alloy Compd,2020,849:156662. doi: 10.1016/j.jallcom.2020.156662
    [31]
    SONG Y J, RONG H W, LI Y X, LIU W W, ZHANG X F. Engineering defect concentrations of multiwalled carbon nanotubes by microwave irradiation for tunable electromagnetic absorption properties[J]. J Mater Sci,2020,55(28):13871−13880. doi: 10.1007/s10853-020-04996-7
    [32]
    ZHU D D, CHENG Y, XUE B, JIANG Y S, WEI C D. Coal gasification fine slag as a low-cost adsorbent for adsorption and desorption of humic acid[J]. Silicon-Neth,2020,12:1547−1556. doi: 10.1007/s12633-019-00250-1
    [33]
    WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2021,6:11009−11017.
    [34]
    CHEN Y X, YUAN F C, SU Q, YU C M, ZHANG K T, LUO P P, HU D F, GUO Y. A novel sound absorbing material comprising discarded luffa scraps and polyester fibers[J]. J Clean Prod,2020,245:118917. doi: 10.1016/j.jclepro.2019.118917
    [35]
    LIU X D, HUANG Y, YAN J, DING L, ZHANG Z, ZHANG N, LIU P B. Covalently bonded Fe3O4@SiO2-reduced graphene oxide nanocomposites as high-efficiency electromagnetic wave absorbers[J]. Ceram Int,2020,46(4):5175−84. doi: 10.1016/j.ceramint.2019.10.263
    [36]
    ZHOU X F, ZHANG C H, ZHANG M, FENG A L, QU S L, ZHANG Y, LIU X H, JIA Z R, WU G L. Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Compos Part A,2019,127:105627. doi: 10.1016/j.compositesa.2019.105627
    [37]
    CHENG Y, CAO J M, LI Y, LI Z Y, ZHAO H Q, JI G B, DU Y W. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chem Eng,2018,6(1):1427−1435. doi: 10.1021/acssuschemeng.7b03846
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (265) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return