多层感知机优化质子交换膜电解槽阳极侧多孔传输层性能

Performance optimization of anodic porous transport layer in proton exchange membrane electrolyzer using multilayer perceptron model

  • 摘要: 质子交换膜电解水(PEMWE)技术因其波动适应性强的特点,在绿色氢气生产中具有广阔的应用前景。PEMWE性能受多种因素影响,其中,多孔传输层(PTL)对于气-水传输性能尤为关键,优化PTL结构对提升PEMWE整体性能具有重要意义。本研究首先构建了一个稳态下的三维PEM单电解槽模型,获得了不同多孔传输层结构参数下PEM电解槽极化曲线,探讨了多孔传输层的孔隙率、厚度和导电率三个特征参数对质子交换膜电解槽性能的影响。其次,通过引入多层感知机机器学习模型,提出了相应的性能优化策略。研究表明,孔隙率对多孔传输层的性能起主导作用,其次是厚度,而导电率的影响相对较小。针对孔隙率和厚度,适度增加孔隙率并降低厚度可有效提升电解槽性能。经过多层感知机模型筛选,当PTL孔隙率为0.52、厚度为0.2 mm、导电率为4×106 S/m时,性能最佳,在2 A/cm2的电流密度下PEM电解槽的工作电压为1.85 V。

     

    Abstract: Resulting from the capability of resisting fluctuating energy inputs, proton exchange membrane water electrolysis (PEMWE) technology holds significant potential for green hydrogen production. The performance of PEMWE is influenced by various structural parameters, in which the properties of the porous transport layer (PTL) are particularly critical. Optimizing the structural characteristics of the PTL is important for enhancing the overall performance of PEM electrolyzers. In this study, a three-dimensional steady-state PEM electrolyzer model is firstly developed. Based on the model, polarization curves of the PEM electrolyzer under different PTL parameters are computed, and the impacts of three characteristic parameters, i.e. porosity, thickness, and conductivity, on the PEMWE performance are thoroughly investigated. Then, the corresponding performance optimization strategies are proposed by incorporating a multilayer perceptron (MLP) machine learning model. It shows that porosity plays a dominant role in the PTL performance among the three parameters, followed by thickness, with conductivity having a relatively minor impact. The increasing of porosity and reducing of thickness can effectively enhance the electrolyzer performance. According to the MLP model screening, the optimal PTL structure is determined to be the porosity of 0.52, thickness of 0.2 mm, and conductivity of 4×106 S/m. At 2 A/cm2, the operating voltage of the PEM electrolyzer is 1.85 V.

     

/

返回文章
返回