孙雪琴, 高新华, 王英勇, 童希立. 氮掺杂碳载体促进铂纳米颗粒电催化氧还原反应的作用机制研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1427-1436. DOI: 10.1016/S1872-5813(22)60030-6
引用本文: 孙雪琴, 高新华, 王英勇, 童希立. 氮掺杂碳载体促进铂纳米颗粒电催化氧还原反应的作用机制研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1427-1436. DOI: 10.1016/S1872-5813(22)60030-6
SUN Xue-qin, GAO Xin-hua, WANG Ying-yong, TONG Xi-li. Study of the mechanism of nitrogen doping in carbon supports on promoting electrocatalytic oxygen reduction reaction over platinum nanoparticles[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1427-1436. DOI: 10.1016/S1872-5813(22)60030-6
Citation: SUN Xue-qin, GAO Xin-hua, WANG Ying-yong, TONG Xi-li. Study of the mechanism of nitrogen doping in carbon supports on promoting electrocatalytic oxygen reduction reaction over platinum nanoparticles[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1427-1436. DOI: 10.1016/S1872-5813(22)60030-6

氮掺杂碳载体促进铂纳米颗粒电催化氧还原反应的作用机制研究

Study of the mechanism of nitrogen doping in carbon supports on promoting electrocatalytic oxygen reduction reaction over platinum nanoparticles

  • 摘要: 氮掺杂碳通常被用作铂基催化剂电催化氧还原反应的功能载体,但是,掺杂的氮对分子氧在铂活性中心上的吸附和还原机理尚不清楚。本研究采用氨气热解的方法制取氮掺杂纳米碳作为载体,并采用调节氨气热解温度进而控制不同种类氮掺杂的含量,可以使铂催化剂获得较高的零价铂含量、较大的电化学活性面积、合适的铂粒径 (2.10 nm)和电子快速传输能力从而提高电催化活性。研究发现,具有最佳氮含量掺杂的Pt/Nano-NC-800催化剂显示出优异的电催化氧还原性能(例如,半波电位为0.80 V vs RHE,极限扩散电流为5.37 mA/cm2),以及强的抗甲醇和一氧化碳中毒能力。该性能优于商业铂碳催化剂(20%,JM)以及大多数沉积在碳纳米颗粒或其他载体上的铂催化剂,表现出优异的应用潜力。

     

    Abstract: Nitrogen-doped carbons (Nano-NC) are often employed as functional supports for boosting oxygen reduction reaction (ORR) over Pt-based catalysts, however, the mechanism of N doping on the adsorption and activation of molecular oxygen on Pt active sites is still not clear. Herein, Nano-NCs as the supports were prepared by a facile NH3 antipyretic method, which allowed to tune the kinds of nitrogen species in carbon matrix and their contents by adjusting the NH3 antipyretic temperatures. With such an exquisite control, the Pt nanoparticles loaded on the as-obtained Nano-NC showed an optimal Pt particle size (2.10 nm), a higher content of Pt0, a large electrochemically active surface area, and fast electron transport ability. As a consequence, the Pt/Nano-NC-800 catalyst with the optimal N-doping showed an outstanding ORR performance with half-wave potential of 0.80 V vs. RHE, limit diffusion current of 5.37 mA/cm2 and improved methanol/CO anti-poisoning, which is superior to the commercial Pt/C catalyst (20%, JM), and most of previously reported Pt-based catalysts. This work may pave a way for the design of the advanced supports for Pt-based catalysts for the ORR applications.

     

/

返回文章
返回