Abstract:
In the present study, the kinetic behaviour and active sites evolution processes of Pt-based catalysts were investigated. It was found that highly selective hydrogen combustion could be achieved over Sn modified Pt-based catalysts in presence of both propane and propene (over 98%). The stability tests, kinetic study and catalyst characterization revealed that the existence of oxygenated species is the reason for accelerated coking reactions. The formation of graphitized cokes serving as additional unselective active sites and the oxidation of tin in PtSn alloy phases are the primary reasons causing the catalytic selectivity loss during long-run tests under propene-rich condition.