武琳渊, 王乙, 陈召英, 田庆玲, 王琳茹, 付紫君, 赵宁, 王晓波, 黄鑫. 火焰喷雾热解制Pd-Pt/CeO2催化甲烷燃烧的性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 725-734. DOI: 10.19906/j.cnki.JFCT.2023083
引用本文: 武琳渊, 王乙, 陈召英, 田庆玲, 王琳茹, 付紫君, 赵宁, 王晓波, 黄鑫. 火焰喷雾热解制Pd-Pt/CeO2催化甲烷燃烧的性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 725-734. DOI: 10.19906/j.cnki.JFCT.2023083
WU Linyuan, WANG Yi, CHEN Zhaoying, TIAN Qingling, WANG Linru, FU Zijun, ZHAO Ning, WANG Xiaobo, HUANG Xin. Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 725-734. DOI: 10.19906/j.cnki.JFCT.2023083
Citation: WU Linyuan, WANG Yi, CHEN Zhaoying, TIAN Qingling, WANG Linru, FU Zijun, ZHAO Ning, WANG Xiaobo, HUANG Xin. Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 725-734. DOI: 10.19906/j.cnki.JFCT.2023083

火焰喷雾热解制Pd-Pt/CeO2催化甲烷燃烧的性能研究

Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst

  • 摘要: 火焰喷雾热解法(FSP)是一种简单、快速、可规模化制备纳米催化剂的技术。通过火焰喷雾热解法合成CeO2和Pt-CeO2载体、Pd-Pt-CeO2催化剂,采用浸渍法在CeO2和Pt-CeO2载体分别沉积Pd-Pt和Pd而制得Pd-Pt双金属催化剂,并考察其甲烷催化燃烧性能。利用ICP、XRD、TEM、BET、H2-TPR、XPS和Raman对催化剂的物化性质进行分析。TEM结果表明,Pd-Pt/CeO2催化剂中Pd和Pt物种高分散于CeO2载体。相比于一步法(one step)制得的Pd-Pt-CeO2(OS-FSP)催化剂,共浸渍法制得Pd-Pt/CeO2(0.25)-WI的催化活性更高,其t50降低了60 ℃,且稳定运行60 h而没有明显失活。这归因于Pd-Pt/CeO2(0.25)-WI催化剂表面上Pd0/Pd2+和Ce3+/Ce4+物质的量比更高、晶格氧更多,进而导致其具有良好的甲烷催化燃烧性能。

     

    Abstract: Flame spray pyrolysis (FSP) is a versatile, rapid, and scalable preparation technique for the nanocatalysts. CeO2 and Pt-CeO2 carriers, Pd-Pt-CeO2 catalyst were synthesized by flame spray pyrolysis, and then Pd-Pt bimetallic catalysts were prepared by impregnation method, and as-obtained Pd-Pt catalysts were tested in the methane combustion. The physicochemical properties of the catalysts were characterized by ICP, XRD, TEM, BET, H2-TPR, XPS, and Raman. TEM results showed that Pd and Pt species were highly dispersed in CeO2 carriers in Pd-Pt/CeO2 catalysts. Compared with the Pd-Pt-CeO2(OS-FSP) catalyst prepared by one-step flame spray pyrolysis, the catalytic activity of the Pd-Pt/CeO2(0.25)-WI prepared by co-impregnation was higher, with its t50 reduced by 60 ℃, and no deactivation was seen for 60 h. It is attributed to the fact that the Pd-Pt/CeO2(0.25)-WI catalyst has a higher molar ratio of Pd0/Pd2+ and Ce3+/Ce4+ on the surface of the catalyst and more lattice oxygen, resulting in an excellent performance during the methane combustion.

     

/

返回文章
返回