留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co/Zr/Al2O3-Pt/ZSM-5催化剂的制备及其合成气转化制液体燃料性能研究

李航 张煜华 向容 艾心燕 闫浩宇 刘成超 李金林

李航, 张煜华, 向容, 艾心燕, 闫浩宇, 刘成超, 李金林. Co/Zr/Al2O3-Pt/ZSM-5催化剂的制备及其合成气转化制液体燃料性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 656-666. doi: 10.19906/j.cnki.JFCT.2023087
引用本文: 李航, 张煜华, 向容, 艾心燕, 闫浩宇, 刘成超, 李金林. Co/Zr/Al2O3-Pt/ZSM-5催化剂的制备及其合成气转化制液体燃料性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 656-666. doi: 10.19906/j.cnki.JFCT.2023087
LI Hang, ZHANG Yuhua, XIANG Rong, AI Xinyan, YAN Haoyu, LIU Chengchao, LI Jinlin. Preparation of Co/Zr/Al2O3-Pt/ZSM-5 catalysts for syngas to liquid fuels[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 656-666. doi: 10.19906/j.cnki.JFCT.2023087
Citation: LI Hang, ZHANG Yuhua, XIANG Rong, AI Xinyan, YAN Haoyu, LIU Chengchao, LI Jinlin. Preparation of Co/Zr/Al2O3-Pt/ZSM-5 catalysts for syngas to liquid fuels[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 656-666. doi: 10.19906/j.cnki.JFCT.2023087

Co/Zr/Al2O3-Pt/ZSM-5催化剂的制备及其合成气转化制液体燃料性能研究

doi: 10.19906/j.cnki.JFCT.2023087
基金项目: 科技部重点研发计划(2022YFB4101201),国家自然科学基金 (21902187, 21972170, U22A20394) ,湖北省重点研发计划(2022BCA084) 和中南民族大学中央高校基本科研业务费专项资金(CZY23016)资助
详细信息
    通讯作者:

    Tel: 027-67842922, E-mail: poale_zhang@aliyun.com

    jinlinli@aliyun.com

  • 中图分类号: O643

Preparation of Co/Zr/Al2O3-Pt/ZSM-5 catalysts for syngas to liquid fuels

Funds: The project was supported by the National Key Research and Development Program of China (2022YFB4101201), the National Science Foundation of China (21902187, 21972170, U22A20394), the Key Research and Development Program of Hubei Province (2022BCA084) and the Fundamental Research Funds for the Central Universities of South-Central MinZu University (CZY23016).
  • 摘要: 以Co基催化剂耦合沸石分子筛催化剂应用于合成气催化转化可以有效改善催化剂的产物选择性。本研究通过浸渍法制备得到Zr/Al2O3载体和Pt/ZSM-5催化剂,再通过超声分散法制备了Co/Al2O3、Co/Zr/Al2O3和Co/Zr/Al2O3-Pt/ZSM-5催化剂。通过系列表征技术对载体和催化剂理化性质进行分析,评价了催化剂费-托合成反应性能。结果表明,Zr的引入有助于提升Co/Zr/Al2O3上Co物种的还原性,改善催化活性,增加C12+重质烃的选择性。当Co/Zr/Al2O3与Pt/ZSM-5耦合后,由于贵金属Pt的助剂效应,进一步促进Co物种的还原,Co/Zr/Al2O3-Pt/ZSM-5催化剂的CTY值提高至8.3×10−5 mmol/(g·s),同时具有较低的CH4、C2−C4产物选择性。此外,Pt/ZSM-5的酸性促进C12+产物的部分裂解,使产物分布向C5−C11液态烃偏移,C5−C11产物选择性达到45.9%。本研究为设计和制备高效的费-托合成催化剂提供了参考。
  • FIG. 3127.  FIG. 3127.

    FIG. 3127.  FIG. 3127.

    图  1  TEM图像 (a) Al2O3,(b) 、(c) Zr/Al2O3及EDX元素分布

    Figure  1  TEM images (a) Al2O3, (b), (C) Zr/Al2O3 and EDX mapping images

    图  2  Pt/ZSM-5催化剂:(a) TEM图像、(b) EDX元素分布、(c)粒径统计、(d) XRD谱图、(e) Py-FTIR和(f) NH3-TPD

    Figure  2  Pt/ZSM-5 catalyst: (a) TEM, (b) EDX mapping images, (c) particle size statistics, (d) XRD,(e) Py-FTIR and (f) NH3-TPD

    图  3  催化剂的XRD谱图

    Figure  3  XRD patterns of catalysts

    图  4  新鲜催化剂的TEM及EDX元素分布

    Figure  4  TEM and EDX mapping images of fresh catalyst

    图  5  Co3O4粒径分布

    Figure  5  Particle size distribution of Co3O4

    图  6  新鲜催化剂的EDX元素分布

    Figure  6  EDX mapping images of fresh catalyst

    图  7  催化剂的N2物理吸附-脱附曲线(a)和孔径分布(b)

    Figure  7  N2 physical adsorption-desorption isotherms (a) and pore size distribution curves (b) of catalysts

    图  8  催化剂的H2-TPR谱图

    Figure  8  H2-TPR curves of catalyst

    图  9  费-托合成性能测试

    Figure  9  Fischer-Tropsch synthesis performance tests

    图  10  催化剂的产物选择性(a)及产物分布(b)

    Figure  10  Product selectivity (a) and product distribution (b) of catalyst

    图  11  反应后Co/Zr/Al2O3-Pt/ZSM-5催化剂的(a) TEM像(b)−(f)EDX元素分布

    Figure  11  Spent of Co/Zr/Al2O3-Pt/ZSM-5 catalyst: (a) TEM; (b)−(f) EDX mapping images

    表  1  催化剂的结构参数

    Table  1  Structural parameters of the catalysts

    Catalyst Co3O4 d a/nm Co0 d b/nm Dispersionc/% TOFd/(10−5mmol·s−1)
    Co/Al2O3 12.5 9.4 10.2 46.9
    Co/Zr/Al2O3 11.9 8.9 10.7 47.7
    Co/Zr/Al2O3-Pt/ZSM-5 11.5 8.6 11.1 149.1
    a: Obtained by particle size statistics; b: According to the formula calculation[32], d(Co0)=0.75×d(Co3O4); c: According to the formula calculation[32], Dispersion=96/d(Co0); d: According to the formula calculationon[33], TOF=rAc/nOF.
    下载: 导出CSV

    表  2  催化剂的孔结构参数

    Table  2  Pore structure parameters of catalyst

    Catalyst Surface area/(m2·g−1) Pore volume/(cm3·g−1) BJH pore size/nm
    Al2O3 242.4 1.06 17.5
    Co/Al2O3 222.0 0.89 16.1
    Co/Zr/Al2O3 184.4 0.70 16.3
    Co/Zr/Al2O3-Pt/ZSM-5 236.0 0.42 16.1/37.1
    下载: 导出CSV

    表  3  催化剂的费-托合成反应性能

    Table  3  FTS performance of the catalysts

    Catalyst CO
    conv./%
    CTY/
    (10−5mmol·g−1·s−1)
    CO2
    sel./%
    Hydrocarbon selectivity/% α4−30
    CH4 C2−C4 C5−C11 C12+
    Co/Al2O3 18.7 4.8 0.7 12.8 18.7 40.3 28.2 0.798
    Co/Zr/Al2O3 19.7 5.1 0.6 12.5 17.3 32.1 38.1 0.822
    Co/Zr/Al2O3-Pt/ZSM-5 16.5 8.3 0.5 10.0 15.0 45.9 29.1 0.776
    下载: 导出CSV
  • [1] ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030−1058. doi: 10.1002/cctc.201000071
    [2] SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,1999,186(1/2):3−12.
    [3] IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen,1997,161(1/2):59−78. doi: 10.1016/S0926-860X(97)00186-5
    [4] 陈治平, 张智, 周文武, 等. 碳化铁的制备及其在费托合成中的应用研究进展[J]. 燃料化学学报,2022,50(11):1381−1392.

    CHEN Z, ZHANG Z, ZHOU W, et al. Preparation of iron carbide and its application in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2022,50(11):1381−1392.
    [5] 贾留洋, 郭中山, 王峰, 等. 铁基费-托合成催化剂研究进展[J]. 工业催化,2021,29(10):12−18.

    JIA Liuyang, GUO Zhongshan, WANG Feng, et al. Advances in Fe-based Fischer-Tropsch synthesis catalysts[J]. Catal Ind,2021,29(10):12−18
    [6] DI Z, FENG X, YANG Z, et al. Effect of iron precursor on catalytic performance of precipitated iron catalyst for Fischer-Tropsch synthesis reaction[J]. Catal Lett,2020,150(9):2640−2647. doi: 10.1007/s10562-020-03158-3
    [7] ZHANG Q, GU J, CHEN J, et al. Facile fabrication of porous Fe@C nanohybrids from natural magnetite as excellent Fischer-Tropsch catalysts[J]. Chem Commum,2020,56(33):4523−4526.
    [8] HAN X, QING M, WANG H, et al. Effect of Fe3O4 content on the CO2 selectivity of iron-based catalyst for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2023,51(2):155−164. doi: 10.1016/S1872-5813(22)60018-5
    [9] LIU C, CHEN Y, ZHAN Y, et al. Nano-ZSM-5-supported cobalt for the production of liquid fuel in Fischer-Tropsch synthesis: Effect of preparation method and reaction temperature[J]. Fuel,2020,263:116619. doi: 10.1016/j.fuel.2019.116619
    [10] YAO J, LIU J, HOFBAUER H, et al. Biomass to hydrogen-rich syngas via steam gasification of bio-oil/biochar slurry over LaCo1-x-CuxO3 perovskite-type catalysts[J]. Energy Convers Manag,2016,117:343−350. doi: 10.1016/j.enconman.2016.03.043
    [11] HAO X, DONG G, YANG Y, et al. Coal to liquid (CTL): commercialization prospects in China[J]. Chem Eng Technol,2007,30(9):1157−1165. doi: 10.1002/ceat.200700148
    [12] 卢文丽, 王俊刚, 孙德魁, 等. 费-托合成钴基催化剂微观结构研究进展[J]. 燃料化学学报,2022,50(4):436−445.

    LU W, WANG J, SUN D, et al. Research progress of microstructure for cobalt-based F-T catalysts[J]. J Fuel Chem Technol,2022,50(4):436−445.
    [13] TSAKOUMIS N E, RØNNING M, BORG Ø, et al. Deactivation of cobalt based Fischer-Tropsch catalysts: A review[J]. Catal Today,2010,154(3/4):162−182. doi: 10.1016/j.cattod.2010.02.077
    [14] SARTIPI S, MAKKEE M, KAPTEIIN F, et al. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review[J]. Catal Sci Technol,2014,4:893−907. doi: 10.1039/C3CY01021J
    [15] YAKOVENO R, SSVOST'YANOV A, NAROCHNIY G, et al. Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer-Tropsch synthesis combined with hydroprocessing[J]. Catal Sci Technol,2020,10(40):7613−7629.
    [16] GAO P, LI S, BU X, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [17] JAVED M, CHENG S, ZHANG G, et al. A facile solvent-free synthesis strategy for Co-imbedded zeolite-based Fischer-Tropsch catalysts for direct gasoline production[J]. Chin J Catal,2020,41(4):604−612. doi: 10.1016/S1872-2067(19)63436-4
    [18] WANG H, ZAHNG Z, WANG S, et al. The effect of the particle size on Fischer-Tropsch synthesis for ZSM-5 zeolite supported cobalt-based catalysts[J]. Chem Comm,2021,57(99):13522−13525.
    [19] WANG Y, YU J, QIAO J, et al. Effect of mesoporous ZSM-5 morphology on the catalytic performance of cobalt catalyst for Fischer-Tropsch synthesis[J]. J Energy Inst,2020,93(3):1187−1194. doi: 10.1016/j.joei.2019.11.002
    [20] KANG J, CHENG K, ZHANG L, et al. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5−C11 isoparaffins[J]. Angew Chem Int Ed,2011,50(22):5200−5203. doi: 10.1002/anie.201101095
    [21] FAZLOLLAHI F, SARKARI M, GHAREBAGHI H et al. Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch catalyst and its catalytic kinetics for the hydrogenation of carbon monoxide[J]. Chin J Chem Eng,2013,21(5):507−519. doi: 10.1016/S1004-9541(13)60503-0
    [22] ROHR F, LINDVAG O A, HOLMEN A, et al. Fischer-Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina[J]. Catal Today,2000,58(4):247−254. doi: 10.1016/S0920-5861(00)00258-3
    [23] MORADI G R, BASIR M M, TAEB A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catal Commun,2003,4(1):27−32. doi: 10.1016/S1566-7367(02)00243-1
    [24] XIONG H, ZHANG Y, LIEW K, et al. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem,2005,231(1/2):145−151. doi: 10.1016/j.molcata.2004.12.033
    [25] JONGSOMJIT B, PANPRANOT J, GOODWIN J. Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts[J]. J Catal,2003,215(1):66−77. doi: 10.1016/S0021-9517(02)00102-1
    [26] JOKAR F, ALAVI S M, REZAEI M. Investigating the hydroisomerization of n-pentane using Pt supported on ZSM-5, desilicated ZSM-5, and modified ZSM-5/MCM-41[J]. Fuel,2022,324:124511. doi: 10.1016/j.fuel.2022.124511
    [27] HUANG X, HOU B, WANG J, et al. CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas[J]. Appl Catal A: Gen,2011,408(1/2):38−46. doi: 10.1016/j.apcata.2011.09.004
    [28] LIU C, ZHANG Y, ZHAO Y, et al. The effect of the nanofibrous Al2O3 aspect ratio on Fischer-Tropsch synthesis over cobalt catalysts[J]. Nanoscale,2017,9(2):570−581. doi: 10.1039/C6NR07529K
    [29] TEOH G L, LIEW K Y, MAHMDDS W A. Synthesis and characterization of sol-gel alumina nanofibers[J]. J Solgel Sci Technol,2007,44:177−186. doi: 10.1007/s10971-007-1631-x
    [30] KIM S M, LEE Y J, JUN K W, et al. Synthesis of thermo-stable high surface area alumina powder from sol-gel derived boehmite[J]. Mater Chem Phys.,2007,104(1):56−61. doi: 10.1016/j.matchemphys.2007.02.044
    [31] LIU C, HONG J, ZHANG Y, et al. Synthesis of γ-Al2O3 nanofibers stabilized Co3O4 nanoparticles as highly active and stable Fischer-Tropsch synthesis catalysts[J]. Fuel,2016,180:777−784. doi: 10.1016/j.fuel.2016.04.006
    [32] MARTINEZ A, LOPEZ C, MARQUEZ F, et al. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters[J]. J Catal,2003,220(2):486−499. doi: 10.1016/S0021-9517(03)00289-6
    [33] ABDELDAYEM H, FAIZ M, HASSAN S, et al. Rare earth oxides doped NiO/γ-Al2O3 catalyst for oxidative dehydrogenation of cyclohexane[J]. J Rare Earths,2015,33(6):611−618. doi: 10.1016/S1002-0721(14)60461-0
    [34] 张萌, 刘佳, 张煜华, 等. 硅球负载高分散钴基催化剂的制备及其费-托合成催化性能研究[J]. 燃料化学学报(中英文),2023,51(5):608−615. doi: 10.1016/S1872-5813(22)60078-1

    ZHANG Meng, LIU Jia, ZHANG Yuhua, et al. Preparation of highly dispersed silicon spheres supported cobalt-based catalysts and their catalytic performance for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2023,51(5):608−615. doi: 10.1016/S1872-5813(22)60078-1
    [35] ARNOLDY P, MOULIJIN J. A. Temperature-programmed reduction of CoO/AI2O3 catalysts[J]. J Catal,1985,97(1):38−54.
    [36] XU D, LI W, DUAN H, et al. Reaction performance and characterization of Co/Al2O3 Fischer-Tropsch catalysts promoted with Pt, Pd and Ru[J]. Catal Lett,2005,102(3/4):229−235. doi: 10.1007/s10562-005-5861-7
    [37] LI Z, WU J, YU J, et al. Effect of incorporation manner of Zr on the Co/SBA-15 catalyst for the Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem,2016,424:384−392. doi: 10.1016/j.molcata.2016.09.025
    [38] MA W, JACOBS G, GAO P, et al. Fischer-Tropsch synthesis: Pore size and Zr promotional effects on the activity and selectivity of 25%Co/Al2O3 catalysts[J]. Appl Catal A: Gen,2014,475:314−324. doi: 10.1016/j.apcata.2014.01.016
    [39] KANG J, ZHOU W, WANG Y, et al. Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels[J]. Chem,2022,8(4):1050−1066. doi: 10.1016/j.chempr.2021.12.016
    [40] PENG X, CHENG K, KANG J, et al. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles[J]. Angew Chem Int Ed,2015,54(15):4553−4556. doi: 10.1002/anie.201411708
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  37
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-23
  • 修回日期:  2024-01-03
  • 录用日期:  2024-01-04
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回