寇永利, 解红娟, 刘广波, 武应全, 张欣悦, 韩怡卓, Noritatsu Tsubaki, 谭猗生. ZnCr基催化剂煅烧温度对异丁醇合成性能的影响[J]. 燃料化学学报(中英文), 2013, 41(06): 703-709.
引用本文: 寇永利, 解红娟, 刘广波, 武应全, 张欣悦, 韩怡卓, Noritatsu Tsubaki, 谭猗生. ZnCr基催化剂煅烧温度对异丁醇合成性能的影响[J]. 燃料化学学报(中英文), 2013, 41(06): 703-709.
KOU Yong-li, XIE Hong-juan, LIU Guang-bo, WU Ying-quan, ZHANG Xin-yue, HAN Yi-zhuo, Noritatsu Tsubaki, TAN Yi-sheng. Effect of calcination temperature on the performance of ZnCr based catalyst in isobutanol synthesis[J]. Journal of Fuel Chemistry and Technology, 2013, 41(06): 703-709.
Citation: KOU Yong-li, XIE Hong-juan, LIU Guang-bo, WU Ying-quan, ZHANG Xin-yue, HAN Yi-zhuo, Noritatsu Tsubaki, TAN Yi-sheng. Effect of calcination temperature on the performance of ZnCr based catalyst in isobutanol synthesis[J]. Journal of Fuel Chemistry and Technology, 2013, 41(06): 703-709.

ZnCr基催化剂煅烧温度对异丁醇合成性能的影响

Effect of calcination temperature on the performance of ZnCr based catalyst in isobutanol synthesis

  • 摘要: 研究了煅烧温度对ZnCr基催化剂合成异丁醇性能的影响。结果表明,随着煅烧温度的升高,催化剂的活性和产物分布都发生了较大的变化。催化剂在较低的温度下煅烧,液相产物中醇主要是甲醇和异丁醇;在较高的温度下煅烧,液相产物醇的分布符合A-S-F方程。用BET、XRD、H2-TPR、XPS等技术手段对催化剂织构参数、体相结构、还原性能、表面组成进行表征。结果表明,在300℃煅烧时,催化剂中的ZnO和Cr2O3未完全形成非计量尖晶石ZnxCr2/3(1-x)O;400℃煅烧时,催化剂中形成了最多量非计量尖晶石ZnxCr2/3(1-x)O;当煅烧温度高于400℃时,随着煅烧温度进一步升高,非计量尖晶石ZnxCr2/3(1-x)O逐步发生了分解,生成了更多量的ZnO和Cr2O3,导致催化剂的活性随之下降。进一步证明了非计量尖晶石ZnxCr2/3(1-x)O是该催化反应活性相。

     

    Abstract: The effect of calcination temperature on the performance of ZnCr based catalysts in isobutanol synthesis was investigated; the texture properties, bulk structure, reducibility and surface composition of the catalysts were characterized by BET, XRD, H2-TPR and XPS. The results indicate that both the activity and product selectivity of the ZnCr catalyst are greatly influenced by its calcination temperature. The catalyst calcined at low temperature shows high selectivity to methanol and isobutanol, while the product distribution over the catalyst calcined at high temperature obeys the A-S-F equation. Calcination at 300℃ is insufficient to get a complete formation of non-stoicheiometric spinel ZnxCr2/3(1-x)O, while calcination at 400℃ gives the maximum amount of non-stoichiometric spinel ZnxCr2/3(1-x)O in the ZnCr based catalyst; however, further increasing the calcination temperature may cause the decomposition of certain non-stoicheiometric spinel ZnxCr2/3(1-x)O to ZnO and Cr2O3, which will reduce its catalytic activity in isobutanol synthesis. Such results suggest that non-stoicheiometric spinel ZnxCr2/3(1-x)O is possibly the active phase of the ZnCr based catalyst in isobutanol synthesis.

     

/

返回文章
返回