闫东杰, 郭通, 玉亚, 陈兆辉. 低温选择性催化还原脱硝Mn-Ce/TiO2催化剂的Pb中毒与再生研究[J]. 燃料化学学报(中英文), 2021, 49(1): 113-120. DOI: 10.1016/S1872-5813(21)60003-8
引用本文: 闫东杰, 郭通, 玉亚, 陈兆辉. 低温选择性催化还原脱硝Mn-Ce/TiO2催化剂的Pb中毒与再生研究[J]. 燃料化学学报(中英文), 2021, 49(1): 113-120. DOI: 10.1016/S1872-5813(21)60003-8
YAN Dong-jie, GUO Tong, YU Ya, CHEN Zhao-hui. Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 113-120. DOI: 10.1016/S1872-5813(21)60003-8
Citation: YAN Dong-jie, GUO Tong, YU Ya, CHEN Zhao-hui. Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 113-120. DOI: 10.1016/S1872-5813(21)60003-8

低温选择性催化还原脱硝Mn-Ce/TiO2催化剂的Pb中毒与再生研究

Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NOx at low temperature

  • 摘要: 考察了Pb对Mn-Ce/TiO2低温选择性催化还原(SCR)脱硝活性的影响,并对Pb中毒的催化剂进行了再生;结合氮吸附、SEM、XRD、FT-IR、H2-TPR和NH3-TPD等表征结果,研究了Mn-Ce/TiO2催化剂Pb中毒和再生活性恢复的原因。结果表明,Pb对Mn-Ce/TiO2催化剂脱硝活性有明显的抑制作用;当Pb的含量为11%时,Mn-Ce/TiO2催化剂在180 ℃下的脱硝效率从原来100%下降至44%。Pb在Mn-Ce/TiO2中的掺杂使得催化剂的比表面积以及活性组分Mn4+和Ce3+的含量降低,影响了氧化还原循环反应(Mn4+ + Ce3+ ↔ Mn3+ + Ce4+)的进行;此外,Pb的加入破坏了催化剂的酸性位点,阻碍了催化剂对NH3的吸附和活化。经硝酸再生后的Mn-Ce/TiO2催化剂的脱硝活性几乎完全恢复,在80–150 ℃下其脱硝活性甚至超过新鲜未中毒的催化剂,其原因主要在于硝酸再生能恢复催化剂的氧化还原能力、增大比表面积、并形成新的酸位点。

     

    Abstract: The effect of lead on the catalytic performance of Mn-Ce/TiO2 catalysts in the selective catalytic reduction (SCR) of NOx with ammonia at low temperature was investigated; with the help of nitrogen sorption, XRD, FT-IR spectroscopy, H2-TPR and NH3-TPD characterization, the causes of lead poisoning and acid regeneration were clarified. The results indicate that the doping of Pb in Mn-Ce/TiO2 leads to a significant decrease of the low-temperature SCR activity; with a Pb loading of 11%, the conversion of NO over Mn-Ce/TiO2 at 180 °C decreases from original 100% on the fresh catalyst to 44% on the Pd-poisoned catalyst. The presence of Pb may reduce the content of active Mn4+ and Ce3+ species on the Mn-Ce/TiO2 catalyst, which suppresses the redox cycle of Mn4+ + Ce3+ ↔ Mn3+ + Ce4+; moreover, the decrease of surface acidity on the Mn-Ce/TiO2 catalyst by the doping of Pb is also disadvantageous to the adsorption and activation of NH3. The Pd-poisoned Mn-Ce/TiO2 can be regenerated by nitric acid treatment; after the regeneration, the catalytic activity of Mn-Ce/TiO2 in NH3-SCR of NO is almost completely recovered and even exceeds that of the fresh catalyst at 80–150 °C. The nitric acid treatment can restore the redox capacity of Mn-Ce/TiO2, increase the surface area, and create new acid sites, which contribute to recovery of the activity of Pb-poisoned Mn-Ce/TiO2 catalyst in NH3-SCR.

     

/

返回文章
返回