留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2O@C复合纳米材料的光诱导合成制备及其光催化产氢性能

李娜 毛树红 严文君 张静

李娜, 毛树红, 严文君, 张静. Cu2O@C复合纳米材料的光诱导合成制备及其光催化产氢性能[J]. 燃料化学学报(中英文), 2024, 52(5): 698-706. doi: 10.1016/S1872-5813(23)60400-1
引用本文: 李娜, 毛树红, 严文君, 张静. Cu2O@C复合纳米材料的光诱导合成制备及其光催化产氢性能[J]. 燃料化学学报(中英文), 2024, 52(5): 698-706. doi: 10.1016/S1872-5813(23)60400-1
LI Na, MAO Shuhong, YAN Wenjun, ZHANG Jing. Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 698-706. doi: 10.1016/S1872-5813(23)60400-1
Citation: LI Na, MAO Shuhong, YAN Wenjun, ZHANG Jing. Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 698-706. doi: 10.1016/S1872-5813(23)60400-1

Cu2O@C复合纳米材料的光诱导合成制备及其光催化产氢性能

doi: 10.1016/S1872-5813(23)60400-1
基金项目: 太原科技大学博士科研启动基金(20222084), 来晋工作优秀博士奖励基金(20232028),国家自然科学基金(22002181),山西省科技合作交流专项基金(202204041101029)和山西省基础研究计划(自由探索类)基金(20210302123214)资助
详细信息
    通讯作者:

    Tel: 15235165505 (YAN W J), 15034193477 (ZHANG J), E-mail: yanwenjun@sxicc.ac.cn (YAN W J)

    2006102@tyust.edu.cn (ZHANG J)

  • 中图分类号: O643.36, O644.1

Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen

Funds: The project was supported by the Ph.D. Scientific Research Foundation of Taiyuan University of Science and Technology (20222084), the Foundation of Outstanding Doctoral Research in Shanxi (Jin) (20232028), the National Natural Science Foundation of China (22002181), the Shanxi Province Scientific and Technological Cooperation and Exchange Special Foundation (202204041101029) and the Shanxi Province Basic Research Program (Free Exploration 20210302123214).
  • 摘要: Cu2O具有禁带窄、环境友好和储量丰富等优点,是一种理想的可见光催化剂,然而其光生载流子复合率高和稳定性差等问题限制了Cu2O在光催化领域的实际应用。为此,本文采用光诱导原位技术,以甲醇为碳源、硫酸铜为铜源,一步成功制备了超薄炭壳层包覆的Cu2O复合纳米材料(Cu2O@C)。结果显示,与常规炭包覆方法相比,光诱导原位技术避免了苛刻的反应条件及繁琐的合成步骤对Cu2O半导体结构的破坏,有效保留了Cu2O本征电子结构,使其具有优异的光催化活性及稳定性。同时,Cu2O@C的核壳结构不仅可以钝化半导体表面缺陷和促进光生载流子的分离,而且炭壳层的包覆还可以避免Cu2O纳米颗粒与溶液的直接接触,有效抑制高活性反应中间体对催化剂结构的破坏。与单独的Cu2O纳米颗粒相比,Cu2O@C复合纳米材料在可见光下的光解水产氢活性和稳定性得到显著提高,产氢速率可达1.28 mmol/(g·h),且在连续五次循环稳定性测试中,氢气生成速率无明显变化。
  • FIG. 3140.  FIG. 3140.

    FIG. 3140.  FIG. 3140.

    图  1  Cu2O@C复合纳米材料的(a)TEM图,(b)HRTEM 图,(c)SEM图,(d)EDS mapping图

    Figure  1  (a) TEM, (b) HRTEM, (c) SEM, (d) EDS mapping images of the Cu2O@C nanocomposite

    图  2  Cu2O@C复合纳米材料的EDX分析

    Figure  2  EDX analysis of the Cu2O@C nanocomposite

    图  3  Cu2O@C复合纳米材料的(a)XRD谱图;(b)Cu 2p XPS光谱谱图;(c)C 1s XPS光谱谱图;(d)O 1s XPS光谱谱图

    Figure  3  (a) XRD pattern; (b) Cu 2p XPS spectrum; (c) C 1s XPS spectrum; (d) O 1s XPS spectrum of the Cu2O@C nanocomposite

    图  4  不同光催化体系所得样品的XRD谱图

    Figure  4  XRD patterns of the solid products prepared in different photocatalytic systems

    图  5  甲醇浓度对炭壳层厚度的影响

    Figure  5  Effect of methanol concentration on the thickness of carbon shell (a): 1.8 mol/L; (b): 3.1 mol/L; (c): 4.3 mol/L.

    图  6  Cu2O和Cu2O@C的 (a)紫外-可见吸收光谱;(b) 荧光光谱

    Figure  6  (a) UV-vis absorption spectra and (b) Fluorescence spectra of Cu2O and Cu2O@C

    图  7  (a) 不同半导体光催化剂可见光下的光解水产氢性能;(b) Cu2O@C光解水产氢循环稳定性测试;(c) Cu2O@C稳定性测试前后的XRD谱图和 (d) 稳定性测试后的TEM图像

    Figure  7  (a) Photocatalytic H2 evolution rate of as-prepared photocatalysts under visible light illumination; (b) Cycling stability test of photocatalytic hydrogen evolution over Cu2O@C nanocomposite; (c) XRD images of the Cu2O@C nanocomposite before and after cycling stability test; (d) TEM images after cycling stability test

    图  8  (a) CD3OD-H2O 和 (b) CH3OH-D2O体系的气体产物质谱图

    Figure  8  MS spectra of the obtained gas in (a) CD3OD-H2O and (b) CH3OH-D2O reaction system

    图  9  Cu2O@C复合纳米颗粒的光解水产氢机理图

    Figure  9  Proposed mechanism for the photocatalytic evolution of H2 over the Cu2O@C nanocomposite

  • [1] ZHAO Q, WANG K, WANG J, et al. Cu2O nanoparticle hyper-cross-linked polymer composites for the visible-Light photocatalytic degradation of methyl orange[J]. ACS Appl Nano Materials,2019,2(5):2706−2712. doi: 10.1021/acsanm.9b00210
    [2] TAN X, YU C, ZHAO C, et al. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2[J]. ACS Appl Mater Interfaces,2019,11(10):9904−9910.
    [3] SIOL S, HELLMANN J C, TILLEY S D, et al. Band alignment engineering at Cu2O/ZnO heterointerfaces[J]. ACS Appl Mater Interfaces,2016,8(33):21824−21831.
    [4] HUANG C, YE W, LIU Q, et al. Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction[J]. ACS Appl Mater Interfaces,2014,6(16):14469−14476.
    [5] LI Q, LI X, WAGEH S, et al. CdS/Graphene nanocomposite photocatalysts[J]. Adv Energy Mater,2015,5(14):1500010−1500038. doi: 10.1002/aenm.201500010
    [6] MA F, WU Y, SHAO Y, et al. 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets[J]. Nano Energy,2016,27:466−474. doi: 10.1016/j.nanoen.2016.07.014
    [7] LIU R, WANG P, WANG X, et al. UV and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst[J]. J Phys Chem C,2012,116(33):17721−17728. doi: 10.1021/jp305774n
    [8] RUDD A L, BRESLIN C B. Photo-induced dissolution of zinc in alkaline solutions[J]. Electrochimica Acta,2000,45(10):1571−1579. doi: 10.1016/S0013-4686(99)00322-9
    [9] HAN C, YANG M Q, WENG B, et al. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon[J]. Phys Chem Chem Phy,2014,16(32):16891−16903. doi: 10.1039/C4CP02189D
    [10] WANG Y, BAI X, QIN H, et al. Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion[J]. ACS Appl Mater Interfaces,2016,8(27):17212−17219.
    [11] ZHANG P, LIU H, LI X. Plasmonic CuCo/carbon dots: An unconventional photocatalyst used for photocatalytic overall water splitting[J]. ACS Sustainable Chem Eng,2020,8(49):17979−17987.
    [12] HU Y, GAO X, YU L, et al. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity[J]. Angew Chem Inter Ed,2013,52(21):5636−5639. doi: 10.1002/anie.201301709
    [13] LI Y, LI J. Carbon-coated macroporous Sn2P2O7 as anode materials for Li-ion battery[J]. J Phys Chem C,2008,112(36):14216−14219. doi: 10.1021/jp804438v
    [14] GUO Y, WANG H, HE C, et al. Uniform carbon-coated ZnO nanorods: Microwave-assisted preparation, cytotoxicity, and photocatalytic activity[J]. Langmuir,2009,25(8):4678−4684. doi: 10.1021/la803530h
    [15] YANG R, ZHAO W, ZHENG J, et al. One-step synthesis of carbon-coated tin dioxide nanoparticles for high lithium storage[J]. J Phys Chem C,2010,114(47):20272−20276. doi: 10.1021/jp107396a
    [16] JIANG L, QU Y, REN Z, et al. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries[J]. ACS Appl Mater Interfaces,2015,7(3):1595−1601.
    [17] DOZZI M V, CANDEO A, MARRA G, et al. Effects of photodeposited gold vs platinum nanoparticles on N, F-doped TiO2 photoactivity: A time-resolved photoluminescence investigation[J]. J Phys Chem C,2018,122(26):14326−14335. doi: 10.1021/acs.jpcc.8b02997
    [18] MAEDA K, TERAMURA K, LU D, et al. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1-xZnx)(N1-xOx) solid solutions in photocatalytic overall water splitting[J]. J Phys Chem C,2007,111(20):7554−7560. doi: 10.1021/jp071056j
    [19] HUA Q, SHANG D, ZHANG W, et al. Morphological evolution of Cu2O nanocrystals in an acid solution: Stability of different crystal planes[J]. Langmuir,2011,27(2):665−671. doi: 10.1021/la104475s
    [20] PAL J, SASMAL A K, GANGULY M, et al. Surface plasmon effect of Cu and presence of n-p heterojunction in oxide nanocomposites for visible light photocatalysis[J]. J Phys Chem C,2015,119(7):3780−3790. doi: 10.1021/jp5114812
    [21] XUE Y, GUO Y, YI Y, et al. Self-catalyzed growth of Cu@graphdiyne core-shell nanowires array for high efficient hydrogen evolution cathode[J]. Nano Energy,2016,30:858−866. doi: 10.1016/j.nanoen.2016.09.005
    [22] BUSSER G W, MEI B, POUGIN A, et al. Photodeposition of copper and chromia on gallium oxide: The role of co-catalysts in photocatalytic water splitting[J]. ChemSusChem,2014,7(4):1030−1034. doi: 10.1002/cssc.201301065
    [23] PORRAS J, GIANNAKIS S, TORRES-PALMA R A, et al. Fe and Cu in humic acid extracts modify bacterial inactivation pathways during solar disinfection and photo-Fenton processes in water[J]. Appl Catal B: Environ,2018,235:75−83. doi: 10.1016/j.apcatb.2018.04.062
    [24] JIANG X, ZHANG M, SHI W, et al. Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition[J]. Nanoscale Res Lett,2014,9:219−224. doi: 10.1186/1556-276X-9-219
    [25] JI X F, XU H P, LIANG S D, et al. 3D ordered macroporous Pt/ZnS@ZnO core-shell heterostructure for highly effective photocatalytic hydrogen evolution[J]. Int J Hydrogen Energy,2022,47(40):17640−17649. doi: 10.1016/j.ijhydene.2022.03.241
    [26] WU J X, XI X X, ZHU W, et al. Boosting photocatalytic hydrogen evolution via regulating Pt chemical states[J]. Chem Eng J,2022,442:136334−136339. doi: 10.1016/j.cej.2022.136334
    [27] SCHWARZE M, STELLMACH D, SCHRODER M, et al. Quantification of photocatalytic hydrogen evolution[J]. Phys Chem Chem Phys,2013,15(10):3466−3472. doi: 10.1039/c3cp50168j
    [28] FLORES-ROJAS E, SAMANIEGO-BENITEZ J E, SERRATO R, et al. Transformation of nanostructures Cu2O to Cu3Se2 through different routes and the effect on photocatalytic properties[J]. ACS Omega,2020,5(32):20335−20342. doi: 10.1021/acsomega.0c02299
    [29] MAHMOUD M A, QIAN W, EL-SAYED M A. Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles[J]. Nano Lett,2011,11(8):3285−3289. doi: 10.1021/nl201642r
    [30] WANG Y, ZHANG YN, ZHAO G, et al. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2, 4, 6-trichlorophenol[J]. ACS Appl Mater Interfaces,2012,4(8):3965−3972.
    [31] ZHENG Y, ZHANG L, GUAN J, et al. Controlled synthesis of Cu0/Cu2O for efficient photothermal catalytic conversion of CO2 and H2O[J]. ACS Sustainable Chem Eng,2021,9(4):1754−1761.
    [32] HAMID S, DILLERT R, BAHNEMANN D W. Photocatalytic reforming of aqueous acetic acid into molecular hydrogen and hydrocarbons over Co-catalyst-Loaded TiO2: Shifting the product distribution[J]. J Phys Chem C,2018,122(24):12792−12809. doi: 10.1021/acs.jpcc.8b02691
    [33] LIU B, NING L, ZHANG C, et al. Enhanced visible-light photocatalytic H2 evolution in Cu2O/Cu2se multilayer heterostructure nanowires having {111} facets and physical mechanism[J]. Inorg Chem,2018,57(13):8019−8027. doi: 10.1021/acs.inorgchem.8b01197
    [34] WEI T, ZHU Y N, AN X, et al. Defect modulation of Z-Scheme TiO2/Cu2O photocatalysts for durable water splitting[J]. ACS Catal,2019,9(9):8346−8354. doi: 10.1021/acscatal.9b01786
    [35] YIN W J, BAI L J, ZHU Y Z et al. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution[J]. ACS Appl Mater Interfaces,2016,8(35):23133−23142.
  • 加载中
图(10)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  68
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 修回日期:  2023-11-06
  • 录用日期:  2023-11-07
  • 网络出版日期:  2023-11-21
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回