留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrocatalyst hydrogenation of lignol-derived compounds: Conversion regularity and product selectivity

WEI Dening TANG Hongbiao YANG Gaixiu YANG Juntao LI Ning CHEN Guanyi CHEN Chunxiang FENG Zhijie

韦德宁, 汤宏彪, 杨改秀, 杨俊涛, 李宁, 陈冠益, 陈春香, 冯治杰. 木质素模型化合物的电化学催化研究:转化特性与产物选择性[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60405-0
引用本文: 韦德宁, 汤宏彪, 杨改秀, 杨俊涛, 李宁, 陈冠益, 陈春香, 冯治杰. 木质素模型化合物的电化学催化研究:转化特性与产物选择性[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60405-0
WEI Dening, TANG Hongbiao, YANG Gaixiu, YANG Juntao, LI Ning, CHEN Guanyi, CHEN Chunxiang, FENG Zhijie. Electrocatalyst hydrogenation of lignol-derived compounds: Conversion regularity and product selectivity[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60405-0
Citation: WEI Dening, TANG Hongbiao, YANG Gaixiu, YANG Juntao, LI Ning, CHEN Guanyi, CHEN Chunxiang, FENG Zhijie. Electrocatalyst hydrogenation of lignol-derived compounds: Conversion regularity and product selectivity[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60405-0

木质素模型化合物的电化学催化研究:转化特性与产物选择性

doi: 10.1016/S1872-5813(23)60405-0
详细信息
  • 中图分类号: TK6

Electrocatalyst hydrogenation of lignol-derived compounds: Conversion regularity and product selectivity

Funds: The project was supported by Shenzhen Science and Technology Program (JCYJ20200109150210400), the National Natural Science Foundation of China (52176214), the Youth Innovation Promotion Association CAS (2020345), the Ministry of Science and Technology of the People's Republic of China (2018YFE0111000), Key Research and Development Program of Jiangxi province (20214BBG74007).
More Information
  • 摘要: 酚类衍生物是生物油的关键组分,对其电催化加氢(ECH)性质的深入理解对于高效利用生物油至关重要。基于此种考量,本工作研究了生物油中代表性物质愈创木酚的电催化加氢性能,探讨了其电催化加氢的反应机制、转化率和产品选择性在不同反应条件下(温度:40−80 °C,高氯酸浓度:0.2–1.0 mol/L,电流强度:(–10)–150 mA)的变化。同时,也探索了愈创木酚中间产物(2-甲氧基环己酮和环己酮)等对其电催化加氢的影响。结果表明,愈创木酚的ECH转化率随温度和电流强度的提高而增加,但高氯酸浓度的增加则对转化率具有相反的影响。同时发现,中间产物的存在增强了愈创木酚的电催化加氢转化率,尤其是2-甲氧基环己酮,其效果更为显著。在此基础上,对其他种酚类衍生物(包括苯酚、邻苯二酚、愈创木酚、丁香酚和香草醛)及其混合物的电催化加氢机制的进一步研究中发现,模型化合物的电催化转化率与苯环上官能团的复杂程度成反比。在其中结构最简单的苯酚具有最高的转化率(89.34%),而由于结构更复杂,香草醛的转化率最低,仅为46.79%。同时,在多组分混合物的电催化加氢研究中发现,模型化合物的协同和竞争机制将显著影响各自的转化率。
  • Figure  1  Effect of the perchloric acid on Pt/C cyclic voltammograms with or without guaiacol

    Figure  2  The electrocatalytic mechanism of Pt/C on guaiacol with HClO4

    Figure  3  ECH conversion rate and selectivity of guaiacol at different temperature

    Figure  4  ECH conversion rate and selectivity of guaiacol in different concentration of perchloric acid

    Figure  5  ECH conversion rate (a), selectivity of 2-methoxycyclohexanone (b), cyclohexanol (c) and reaction constant (d) of guaiacol with different current intensity

    Figure  6  The mechanism of the ECH of lignin related phenol

    Reaction condition: t= 60 °C, c(guaiacol)= 10 mmol/L, c(HClO4) = 0.2 mol/L, Iw= −100 mA.

    Figure  7  The conversion rate of (a) two (b) three (c) four (d) five kinds of lignin-related phenol mixed

    Table  1  The effect on ECH conversion exerted by blending of 2-methoxycyclohexanone and cyclohexanone

    Time/min Conversion rate of the blank groupa/% Conversion rate of the blank group with 2-methoxycyclohexanonea/% Conversion rate of blank group with cyclohexanonea/%
    10 4.74 22.88 8.21
    20 15.99 29.48 18.65
    30 20.23 32.00 21.49
    60 32.83 41.94 40.21
    120 46.66 66.19 58.08
    180 69.24 68.36 67.35
    240 74.46 74.93 80.79
    360 88.85 83.43 87.62
    480 94.79 87.90 91.92
    600 97.12 89.04 94.40
    a: Reaction condition: t= 60 °C, c(guaiacol)= 10 mmol/L, c(HClO4) = 0.2 mol/L, Iw= −100 mA.
    下载: 导出CSV
  • [1] DAI L, WANG Y, LIU Y, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass[J]. Sci Total Environ,2020,749:142386. doi: 10.1016/j.scitotenv.2020.142386
    [2] FAKAYODE OA, WAHIA H, ZHANG L, et al. State-of-the-art co-pyrolysis of lignocellulosic and macroalgae biomass feedstocks for improved bio-oil production-A review[J]. Fuel,2023,332:126071. doi: 10.1016/j.fuel.2022.126071
    [3] SÁNCHEZ-BORREGO F J, ALVAREZ-MATEOS P, GARCÍA-MARTÍN J F. Biodiesel and other value-added products from bio-oil obtained from agrifood waste[J]. Processes,2021,9:797. doi: 10.3390/pr9050797
    [4] CHEN C, WEI D, ZHAO J, et al. Study on co-pyrolysis and products of Chlorella vulgaris and rice straw catalyzed by activated carbon/HZSM-5 additives[J]. Bioresour Technol,2022,360:127594. doi: 10.1016/j.biortech.2022.127594
    [5] WEI D, CHEN C, HUANG X, et al. Products and pathway analysis of rice straw and chlorella vulgaris by microwave-assisted co-pyrolysis[J]. J Energy Inst.,2023,107:101182. doi: https://doi.org/10.1016/j.joei.2023.101182
    [6] ZACHER A H, OLARTE M V, SANTOSA D M, et al. A review and perspective of recent bio-oil hydrotreating research[J]. Green Chem,2014,16:491−515. doi: 10.1039/C3GC41382A
    [7] KUMAR R, STREZOV V. Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products[J]. Renewable Sustainable Energy Rev,2021,135:110152. doi: 10.1016/j.rser.2020.110152
    [8] WANG X, WU P, WANG Z, et al. Chlorine-Modified Ru/TiO2 catalyst for selective guaiacol hydrodeoxygenation[J]. ACS Sustainable Chem Eng,2021,9:3083−3094. doi: 10.1021/acssuschemeng.0c07292
    [9] LAM C H, LOWE C B, LI, et al. Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes[J]. Green Chem,2015,17:601−609. doi: https://doi.org/10.1039/c4gc01632g
    [10] WIJAYA Y P, PUTRA R D, SMITH K J, et al. Guaiacol hydrogenation in methanesulfonic acid using a stirred slurry electrocatalytic reactor: Mass transport and reaction kinetics aspects[J]. ACS Sustainable Chem Eng,2021,9:13164−13175. doi: 10.1021/acssuschemeng.1c03332
    [11] GAREDEW M, LIN F, SONG B, et al. Greener routes to biomass waste valorization: Lignin transformation through electrocatalysis for renewable chemicals and fuels production[J]. Chemsuschem,2020,13:4214−4237. doi: 10.1002/cssc.202000987
    [12] LI Z, KELKAR S, RAYCRAFT L, et al. A mild approach for bio-oil stabilization and upgrading: Electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth[J]. Green Chem,2014,16:844−852. doi: 10.1039/C3GC42303D
    [13] LAZZARI E, SCHENA T, MARCELO M C A, et al. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis[J]. Ind Crops Prod,2018,111:856−864. doi: 10.1016/j.indcrop.2017.11.005
    [14] XIAO Y, RAMANATHAN A, SUBRAMANIAM B, et al. Guaiacol hydrodeoxygenation and hydrogenation over bimetallic Pt-M (Nb, W, Zr)/KIT-6 catalysts with tunable acidity[J]. ACS Sustainable Chem Eng,2022,10:4831−4838. doi: 10.1021/acssuschemeng.1c07071
    [15] TRAN Q. K, LY H. V, KWON B, et al. Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio-oil over Fe/AC and Ni/γ-Al2O3 catalysts[J]. Renewable Energy,2021,173:886−895. doi: 10.1016/j.renene.2021.03.138
    [16] PARRILLA-LAHOZ S, JIN W, PASTOR-PÉREZ L, et al. Guaiacol hydrodeoxygenation in hydrothermal conditions using N-doped reduced graphene oxide (RGO) supported Pt and Ni catalysts: Seeking for economically viable biomass upgrading alternatives[J]. Appl Catal A: Gen,2021,611:117977. doi: 10.1016/j.apcata.2020.117977
    [17] Morteo-Flores F and Roldan A. Mechanisms and Trends of Guaiacol Hydrodeoxygenation on Transition Metal Catalysts[J]. Front Catal.,2022,2:861364. doi: https://doi.org/10.3389/fctls.2022.86136425
    [18] BROGLIA F, RIMOLDI L, MERONI D, et al. Guaiacol hydrodeoxygenation as a model for lignin upgrading. Role of the support surface features on Ni-based alumina-silica catalysts[J]. Fuel (Lond),2019,243:501−508. doi: 10.1016/j.fuel.2019.01.157
    [19] DEEPA AK, DHEPE P. L. Function of metals and supports on the hydrodeoxygenation of phenolic compounds[J]. Chempluschem,2014,79:1573−1583. doi: 10.1002/cplu.201402145
    [20] CHEN G, LIANG L, LI N, et al. Upgrading of bio-oil model compounds and bio-crude into biofuel by electrocatalysis: A review[J]. ChemSusChem,2021,14:1037−1052. doi: 10.1002/cssc.202002063
    [21] WU Y, GUO Z, SUN C, et al. High-efficiency electrochemical hydrogenation of biomass-derived benzaldehyde compounds via a durable and versatile dendritic-like Pd/Cu-CF electrocatalyst[J]. Fuel Process Technol,2022,237:107436. doi: 10.1016/j.fuproc.2022.107436
    [22] ANDREWS E, LOPEZ-RUIZ J. A, EGBERT J. D, et al. Performance of base and noble metals for electrocatalytic hydrogenation of bio-oil-derived oxygenated compounds[J]. ACS Sustainable Chem Eng,2020,8:4407−4418. doi: 10.1021/acssuschemeng.9b07041
    [23] WIJAYA Y. P, SMITH K. J, KIM C. S, et al. Synergistic effects between electrocatalyst and electrolyte in the electrocatalytic reduction of lignin model compounds in a stirred slurry reactor[J]. J Appl Electrochem,2021,51:51−63. doi: 10.1007/s10800-020-01429-w
    [24] WIJAYA Y P, GROSSMANN-NEUHAEUSLER T, DHEWANGGA PUTRA R D, et al. Electrocatalytic Hydrogenation of Guaiacol in Diverse Electrolytes Using a Stirred Slurry Reactor[J]. ChemSusChem,2020,13:629−639.
    [25] MCCAFFERTY E. Introduction to Corrosion Science[M]. BerlinL: Springer Science & Business Media, 2010.
    [26] SONG Y, CHIA S. H, SANYAL U, et al. Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers[J]. J Catal,2016,344:263−272. doi: 10.1016/j.jcat.2016.09.030
    [27] ZHAO C, HE J, LEMONIDOU A. A, et al. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. J Catal,2011,280:8−16. doi: 10.1016/j.jcat.2011.02.001
    [28] BEHROUZI L, ZAND Z, FOTUHI M, et al. Water oxidation couples to electrocatalytic hydrogenation of carbonyl compounds and unsaturated carbon–carbon bonds by nickel[J]. Sci Rep,2022,12:19968. doi: 10.1038/s41598-022-23777-7
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  17
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2023-12-25
  • 录用日期:  2023-12-26
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回