留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨炭负载单原子铁催化剂非均相还原 NO 的微观作用机理:DFT研究

赵妍 李响 黄金凯 李先春 朱亚明 王焕然

赵妍, 李响, 黄金凯, 李先春, 朱亚明, 王焕然. 石墨炭负载单原子铁催化剂非均相还原 NO 的微观作用机理:DFT研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60407-4
引用本文: 赵妍, 李响, 黄金凯, 李先春, 朱亚明, 王焕然. 石墨炭负载单原子铁催化剂非均相还原 NO 的微观作用机理:DFT研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60407-4
ZHAO Yan, LI Xiang, HUANG Jinkai, LI Xianchun, ZHU Yaming, WANG Huanran. Mechanism of heterogeneous reduction of NO by graphite-supported single-atom Fe catalyst: DFT study[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60407-4
Citation: ZHAO Yan, LI Xiang, HUANG Jinkai, LI Xianchun, ZHU Yaming, WANG Huanran. Mechanism of heterogeneous reduction of NO by graphite-supported single-atom Fe catalyst: DFT study[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60407-4

石墨炭负载单原子铁催化剂非均相还原 NO 的微观作用机理:DFT研究

doi: 10.1016/S1872-5813(23)60407-4
基金项目: 辽宁省教育厅青年项目(JYTQN2023237)资助
详细信息
    通讯作者:

    Tel: 18341357135, Fax: 0412-5929619, E-mail: 312166@ustl.edu.cn

  • 中图分类号: TK6

Mechanism of heterogeneous reduction of NO by graphite-supported single-atom Fe catalyst: DFT study

Funds: The project was supported by Youth Project of Liaoning Department of Education (JYTQN2023237).
  • 摘要: 基于密度泛函理论和经典过渡态理论,探究了石墨炭负载单原子Fe催化剂(Fe/G)异相还原NO的微观机理,并对催化剂失活原因进行分析。结果表明,基于E-R机理,NO还原反应依次经历了N2O形成与释放、N2形成与释放四个阶段。而基于L-H机理,NO还原反应主要经历了N2形成与释放两个阶段。在E-R机理作用下,NO分子以N,O-down结构吸附在Fe原子上发生的NO还原反应的控速步骤能垒值仅为15.5 kJ/mol,小于其余路径控速步骤能垒值。由能垒角度分析,Fe原子上残留的活性氧被还原的能垒值高于NO还原生成N2的能垒值。NO分解后残留在Fe原子表面的活性氧抑制了NO的吸附与还原,Fe原子活性位的缺失导致催化剂的失活,单原子Fe的存在促进了NO还原反应的进行。由动力学角度分析,随着反应温度的升高,NO还原速率较活性氧转移速率提升更为显著。
  • 图  1  Fe/G反应模型示意图

    Figure  1  Reaction model of Fe/G

    图  2  基于P1与P2路径下Fe/G还原NO反应中间组分的几何构型

    Figure  2  Geometric configurations of intermediate components in Fe/G-NO reaction based on P1 and P2 pathways (Bond length: nm)

    图  3  基于P1与P2路径下Fe/G还原NO的势能面

    Figure  3  Reaction potential energy surface of Fe/G-NO reaction based on P1 and P2 pathways

    图  4  N2O还原反应中间组分的几何构型

    Figure  4  Geometric configurations of intermediate components in N2O reduction (Bond length: nm)

    图  5  N2O还原反应的势能面

    Figure  5  Reaction potential energy surface of N2O reduction

    图  6  基于P3路径下Fe/G还原NO反应中间组分的几何构型

    Figure  6  Geometric configurations of intermediate components in Fe/G-NO reaction based on P3 pathway (Bond length: nm)

    图  7  基于P3路径下Fe/G还原NO的势能面

    Figure  7  Reaction potential energy surface of Fe/G-NO reaction based on P3 pathway

    图  8  O*还原反应中间组分的几何构型

    Figure  8  Geometric configurations of intermediate components in O* reduction (Bond length: nm)

    图  9  O*还原反应的势能面

    Figure  9  Reaction potential energy surface of O* reduction

    图  10  不同温度下的反应速率常数

    Figure  10  Reaction rate constants at different temperatures

    表  1  反应动力学参数

    Table  1  Reaction kinetic parameters

    Course of reaction Pre-exponential factor A/s−1 Activation energy Ea/(kJ·mol−1) Arrhenius equation
    P1-IM2→P1-IM3 1.32×1015 19.28 k=1.32×1015e−2318.98/T
    P2-IM2→P1-IM3 6.68×1012 111.99 k=6.68×1012e−13470.04/T
    P3-IM1→P3-P+CO2 9.72×1014 61.36 k=9.72×1014e−7380.32/T
    CO-IM1→IM0+CO2 4.36×1011 37.16 k=4.36×1011e−4469.57/T
    下载: 导出CSV
  • [1] 孙锦昌, 任翠涛, 赵明新, 等. Cu/Hβ催化剂NH3选择性催化还原NO性能研究[J]. 燃料化学学报(中英文),2023,51(6):823−831.

    SUN Jinchang, REN Cuitao, ZHAO Mingxin, et al. Selective catalytic reduction of NO by Cu/Hβ catalyst NH3[J]. J Fuel Chem Technol,2023,51(6):823−831.
    [2] WU G, FENG X, ZHANG H, et al. The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NO x with NH3[J]. Appl Surf Sci,2018,427:24−36. doi: 10.1016/j.apsusc.2017.08.135
    [3] ZHOU Y, REN S, WANG M, et al. Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO[J]. J Energy Inst,2021,99:97−104. doi: 10.1016/j.joei.2021.08.003
    [4] LIU S, XUE W, JI Y, et al. Interfacial oxygen vacancies at Co3O4-CeO2 heterointerfaces boost the catalytic reduction of NO by CO in the presence of O2[J]. Appl Catal B: Environ,2023,323:122151. doi: 10.1016/j.apcatb.2022.122151
    [5] 吕文婷, 焦卫勇, 秦张峰, 等. 制备条件对Cu-SSZ-13分子筛的形貌及其氨选择性催化还原脱硝性能的影响[J]. 燃料化学学报,2022,50(11):1393−1403.

    LÜ Wenting, JIAO Weiyong, QIN Zhangfeng, et al. Effect of preparation conditions on the morphology of Cu-SSZ-13 molecular sieve and its denitrification performance by selective catalytic reduction of ammonia[J]. J Fuel Chem Technol,2022,50(11):1393−1403.
    [6] OTON L F, OLIXEIRA A C, DE ARAUJO J C S, et al. Selective catalytic reduction of NO x by CO (CO-SCR) over metal-supported nanoparticles dispersed on porous alumina[J]. Adv Powder Technol,2020,31:464−476. doi: 10.1016/j.apt.2019.11.003
    [7] 张恒, 周皞, 温妮妮, 等. Cu-SAPO-44选择性催化丙烯还原NO性能研究[J]. 燃料化学学报,2022,50(18):1064−1074.

    ZHANG Heng, ZHOU Hao, WEN Nini, et al. Study on the performance of Cu-SAPO-44 selective catalytic reduction of NO by propylene[J]. J Fuel Chem Technol,2022,50(18):1064−1074.
    [8] WANG H, LI X, ZHU M, et al. Preparation and evaluation of catalysts of highly dispersed zerovalent iron (Fe0) supported on activated carbon for NO reduction[J]. Fuel,2021,303:121252. doi: 10.1016/j.fuel.2021.121252
    [9] YIN P, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew Chem Int Ed,2016,55:10800−10805. doi: 10.1002/anie.201604802
    [10] CUI T, LI L, YE C, et al. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities[J]. Adv Funct Mater,2021,32:2108381.
    [11] 张艺严, 陈熙元, 董灵玉, 等. 炭载单原子催化剂在电还原二氧化碳领域的研究进展[J]. 燃料化学学报(中英文),2023,51(11):1617−1632.

    ZHANG Yiyan, CHEN Xiyuan, DONG Lingyu, et al. Research progress in the field of electroreduction of carbon dioxide by carbon supported single atom catalyst[J]. J Fuel Chem Technol,2023,51(11):1617−1632.
    [12] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeO x [J]. Nature Chemistry,2011,3:634−641. doi: 10.1038/nchem.1095
    [13] 裴永丽, 郭长江, 张宁, 等. 原子层沉积制备纳米催化剂研究进展[J]. 燃料化学学报,2021,49(9):1281−1293.

    PEI Yongli, GUO Changjiang, ZHANG Ning, et al. Research progress on preparation of nanocatalysts by atomic layer deposition[J]. J Fuel Chem Technol,2021,49(9):1281−1293.
    [14] JI Y, LIU S, SONG S, et al. Negatively charged single-atom Pt catalyst shows superior SO2 tolerance in NO x reduction by CO[J]. ACS Catal,2022,13:224−236.
    [15] YUE S, WANG C, XU Z, et al. A theoretical exploration of the effect and mechanism of CO on NO2 heterogeneous reduction over carbonaceous surfaces[J]. Fuel,2021,290:120102. doi: 10.1016/j.fuel.2020.120102
    [16] YAMASHITA H, YAMADA H, TOMITA A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J]. Appl Catal A: Gen,1991,78:L1−L6. doi: 10.1016/0166-9834(91)80101-2
    [17] DENG C, SU Y, LI F, et al. Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning[J]. J Mater Chem A,2020,8:24563−24571. doi: 10.1039/D0TA08004G
    [18] WANG H, LI X, MENG F, et al. Preparation and evaluation of iron nanoparticles embedded CNTs grown on ZSM-5 as catalysts for NO decomposition[J]. Chem Eng J,2020,392:123798. doi: 10.1016/j.cej.2019.123798
    [19] ZHANG X, WU H, XIE M, et al. A thorough theoretical exploration of the effect mechanism of Fe on HCN heterogeneous formation from nitrogen-containing char[J]. Fuel,2020,280:118662. doi: 10.1016/j.fuel.2020.118662
    [20] WANG H, LI X, WU J, et al. An experimental and density functional theory simulation study of NO reduction mechanisms over Fe(0) supported on graphene with and without CO[J]. Langmuir,2023,39:15369−15379. doi: 10.1021/acs.langmuir.3c02461
    [21] ZHANG H, LIU J, SHEN J, et al. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Nat Energy,2015,82:312−321. doi: 10.1016/j.energy.2015.01.040
    [22] SANTOS J C D S D, FERREIRA D F S, DA SILVA C A B, et al. Transitions in electrical behavior of molecular devices based on 1-D and 2-D graphene-phagraphene-graphene hybrid heterojunctions[J]. Mater Chem Phys,2020,253:123420. doi: 10.1016/j.matchemphys.2020.123420
    [23] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry[J]. Carbon,1998,36:1061−1070. doi: 10.1016/S0008-6223(98)00078-5
    [24] HU L, HU X, WU X, et al. Density functional calculation of transition metal adatom adsorption on graphene[J]. Physica B Condens Matter,2010,405:3337−3341. doi: 10.1016/j.physb.2010.05.001
    [25] MANADE M, VINES F, ILLAS F. Transition metal adatoms on graphene: A systematic density functional study[J]. Carbon,2015,95:525−534. doi: 10.1016/j.carbon.2015.08.072
    [26] BAI Y, BIAN X, WU W. Catalytic properties of CuO/CeO2-Al2O3 catalysts for low concentration NO reduction with CO[J]. Appl Surf Sci,2019,463:435−444. doi: 10.1016/j.apsusc.2018.08.229
    [27] LU T, CHEN Q. Shermo: A general code for calculating molecular thermochemistry properties[J]. Comput Theor Chem,2021,1200:113249. doi: 10.1016/j.comptc.2021.113249
    [28] 张秀霞, 谢苗, 伍慧喜, 等. 钙对焦炭非均相还原NO的微观作用机理: DFT研究[J]. 燃料化学学报,2020,48(2):163−171.

    ZHANG Xiuxia, XIE Miao, WU Huixi, et al. The microscopic mechanism of heterogeneous reduction of NO by calcium in coke: A DFT study[J]. J Fuel Chem Technol,2020,48(2):163−171.
    [29] YANG L, YANG H, LIU Q, et al. Study on the Reaction Performance of Ce- and Co-Modified Mn-Based Catalysts in C3H6-SCR[J]. J Phys Chem C,2023,127:15278−15289. doi: 10.1021/acs.jpcc.3c04279
    [30] WANG B, XIONG Y, HAN Y, et al. Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming[J]. Appl Catal B: Environ,2019,249:257−265. doi: 10.1016/j.apcatb.2019.02.074
    [31] 张峰, 孙浩, 张建树, 等. Fe的分散程度对煤焦催化加氢气化的影响[J]. 燃料化学学报,2019,47(4):402−410.

    ZHANG Feng, SUN Hao, ZHANG Jianshu, et al. Effect of Fe dispersion degree on catalytic hydrogasification of coal coke[J]. J Fuel Chem Technol,2019,47(4):402−410.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  21
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2023-12-27
  • 录用日期:  2023-12-27
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回