留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La修饰提高CO2制甲醇催化剂Cu/ZnO/Al2O3的稳定性

牛萌萌 姜雅楠 张弦 张翠娟 刘源

牛萌萌, 姜雅楠, 张弦, 张翠娟, 刘源. La修饰提高CO2制甲醇催化剂Cu/ZnO/Al2O3的稳定性[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60438-X
引用本文: 牛萌萌, 姜雅楠, 张弦, 张翠娟, 刘源. La修饰提高CO2制甲醇催化剂Cu/ZnO/Al2O3的稳定性[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60438-X
NIU Mengmeng, JIANG Yanan, ZHANG Xian, ZHANG Cuijuan, LIU Yuan. Promoted stability of Cu/ZnO/Al2O3 catalysts for methanol production from CO2 hydrogenation by La modification[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60438-X
Citation: NIU Mengmeng, JIANG Yanan, ZHANG Xian, ZHANG Cuijuan, LIU Yuan. Promoted stability of Cu/ZnO/Al2O3 catalysts for methanol production from CO2 hydrogenation by La modification[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60438-X

La修饰提高CO2制甲醇催化剂Cu/ZnO/Al2O3的稳定性

doi: 10.1016/S1872-5813(24)60438-X
基金项目: 国家自然科学基金(21872101, 21962014),鄂尔多斯市重点研发计划(YF20232313)和鄂尔多斯市产业创新人才团队和山西省区域合作项目(202204041101029)资助
详细信息
    通讯作者:

    Tel:13702112319, E-mail: yuanliu@tju.edu.cn

  • 中图分类号: O643

Promoted stability of Cu/ZnO/Al2O3 catalysts for methanol production from CO2 hydrogenation by La modification

Funds: The project was supported by National Natural Science Foundation of China (21872101, 21962014), the Key Research and Development Program of Ordos (YF20232313), Ordos Industrial Innovation Talent Team and the regional cooperation program of Shanxi (202204041101029).
  • 摘要: CO2加氢制甲醇反应中Cu/ZnO/Al2O3催化剂的失活是限制其应用的主要原因之一,实验通过向Cu/ZnO/Al2O3催化剂中添加不同含量的La,合成了一系列La改性的Cu/ZnO/Al2O3催化剂,以提高其对 CO2加氢制甲醇反应的催化稳定性。在温度200 ℃,压力3 MPa,空速12000 mL/(g·h)条件下进行的100 h短期稳定性测试中,未改性的Cu/ZnO/Al2O3催化剂在100 h内活性衰减明显,添加La后催化剂稳定性逐渐得到提高,当La添加量为5% 时活性最佳(CO2转化率4%,甲醇选择性85%),并且该催化剂在1000 h长期稳定性测试中表现出较高的稳定性(在190−220 h失活 17% 后保持稳定)。通过X射线衍射(XRD)、X射线光电子能谱(XPS)表征发现,加入5% La提高了Cu/ZnO/Al2O3催化剂中Cu、ZnO的分散度,抑制了催化剂中Cu的烧结;同时稳定了Cu0/+,延缓了催化剂中Cu的氧化,从而提高了催化剂的稳定性。
  • 图  1  La改性的Cu/ZnO/Al2O3 催化剂 100 h稳定性测试

    Figure  1  La modified Cu/ZnO/Al2O3 catalyst 100 h stability test Reaction condition: 200 ℃, 3 MPa, 12000 mL/(g·h).

    图  2  5% La Cu/ZnO/Al2O3 催化剂的稳定性

    Figure  2  250 h and 1000 h stability tests of 5% La Cu/ZnO/Al2O3 catalyst Reaction condition: 200 ℃, 3 MPa, 12000 mL/(g·h).

    图  3  0% La、5% La Cu/ZnO/Al2O3催化剂煅烧后、还原后及稳定性测试后的XRD谱图

    Figure  3  XRD patterns of 0% La and 5% La Cu/ZnO/Al2O3 catalysts after calcination, reduction and stability tests.

    图  4  0% La、5% La Cu/ZnO/Al2O3催化剂煅烧后、还原后及稳定性测试后的XPS谱图

    Figure  4  XPS spectra of 0% La and 5% La Cu/ZnO/Al2O3 catalysts after calcination, reduction and stability tests

    (a): Cu 2p; (b): Cu LMM; (c): La 3d; (d): O 1s.

    图  5  添加5% La 提高 Cu/ZnO/Al2O3 稳定性

    Figure  5  Schematic diagram of adding 5% La to improve the stability of Cu/ZnO/Al2O3

    表  1  0%、5% La Cu/ZnO/Al2O3催化剂还原后及稳定性测试后的不同价态Cu含量和煅烧后、还原后及稳定性测试后的不同O物种含量

    Table  1  0%, 5% La Cu/ZnO/Al2O3 catalysts with different valence Cu contents after calcination, reduction and stability tests and different O species contents after calcination, reduction and stability tests

    Samples Cu/% O/%
    Cu0 Cu+ Cu2+ Olat Oads Owea
    0% La calcined 100.0 18.8 63.0 18.2
    0% La reduced 27.6 7.9 64.5 23.2 76.8
    0% La after 100 h 13.1 7.0 79.9 36.5 63.5
    5% La calcined 100.0 18.5 70.0 11.5
    5% La reduced 32.8 16.8 50.4 11.6 88.4
    5% La after 100 h 19.8 20.0 60.2 12.4 87.6
    5% La after 250 h 13.4 15.2 71.4 32.6 67.4
    5% La after 1000 h 12.8 14.3 72.9 34.0 66.0
    下载: 导出CSV
  • [1] NEETZOW P. The effects of power system flexibility on the efficient transition to renewable generation[J]. Appl Energy,2021,283:116278 doi: 10.1016/j.apenergy.2020.116278
    [2] ANDERSSON J and GRONKVIST S. Large-scale storage of hydrogen[J]. Int J Hydrogen Energy,2019,44:11901−11919 doi: 10.1016/j.ijhydene.2019.03.063
    [3] ALVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117:9804−9838 doi: 10.1021/acs.chemrev.6b00816
    [4] BOWKER M. Methanol synthesis from CO2 hydrogenation[J]. ChemCatChem,2019,11:4238−4246 doi: 10.1002/cctc.201900401
    [5] ONISHI N, HIMEDA Y. Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation[J]. Coordin Chem Rev,2022,472:214767 doi: 10.1016/j.ccr.2022.214767
    [6] RUI N, WANG Z, SUN K, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B:Environ,2017,218:488−497 doi: 10.1016/j.apcatb.2017.06.069
    [7] TIAN G, WU Y, WU S, et al. Solid-state synthesis of Pd/In2O3 catalysts for CO2 hydrogenation to methanol[J]. Catal Lett,2023,153:903−910 doi: 10.1007/s10562-022-04030-2
    [8] CUI G, ZHANG Q, ZHOU L, et al. Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to methanol[J]. Small,2023,19:2204914 doi: 10.1002/smll.202204914
    [9] YANG C, PEI C, LUO R, et al. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol[J]. J Am Chem Soc,2020,142:19523−19531 doi: 10.1021/jacs.0c07195
    [10] HAN Z, TANG C, SHA F, et al. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure[J]. J Catal,2021,396:242−250 doi: 10.1016/j.jcat.2021.02.024
    [11] WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci Adv,2017,3:e1701290 doi: 10.1126/sciadv.1701290
    [12] NIU J, LIU H, JIN Y, et al. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis[J]. Int J Hydrogen Energy,2022,47:9183−9200 doi: 10.1016/j.ijhydene.2022.01.021
    [13] TWIGG V and SPENCER S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Appl Catal A:Genl,2001,212:161−174 doi: 10.1016/S0926-860X(00)00854-1
    [14] DANG S, YANG H, GAO P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catal Today,2019,330:61−75 doi: 10.1016/j.cattod.2018.04.021
    [15] NATESAKHAWAT S, OHODNICKI R, HOWARD B H, et al. Adsorption and deactivation characteristics of Cu/ZnO-based catalysts for methanol synthesis from carbon dioxide[J]. Top Catal,2013,56:1752−1763 doi: 10.1007/s11244-013-0111-5
    [16] GONG J, YUE H, ZHAO Y, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc,2012,134:13922−13925 doi: 10.1021/ja3034153
    [17] LIANG B, MA J, SU X, et al. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol[J]. Ind Eng Chem Res,2019,58:9030−9037 doi: 10.1021/acs.iecr.9b01546
    [18] LI H, WANG L and XIAO S. Silica-modulated Cu-ZnO-Al2O3 catalyst for efficient hydrogenation of CO2 to methanol[J]. Catal Today,2023,418:114051 doi: 10.1016/j.cattod.2023.114051
    [19] AN B, ZHANG J, CHENG K, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2[J]. J Am Chem Soc,2017,139:3834−3840 doi: 10.1021/jacs.7b00058
    [20] WANG P, ZHANG H, WANG S, et al. Controlling H2 adsorption of Cu/ZnO/Al2O3/MgO with enhancing the performance of CO2 hydrogenation to methanol at low temperature[J]. J Alloy Compd,2023,966:171577 doi: 10.1016/j.jallcom.2023.171577
    [21] GUO X, MAO D, LU G, et al. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal A:Chem,2011,345:60−68 doi: 10.1016/j.molcata.2011.05.019
    [22] JI Y, LIN S, XU G, et al. Enhancing CO2 hydrogenation to methanol via constructing Cu–ZnO–La2O3 interfaces[J]. Catal Lett,2023,23:10562
    [23] CHEN K, DUAN X, FANG H, et al. Selective hydrogenation of CO2 to methanol catalyzed by Cu supported on rod-like La2O2CO3[J]. Catal Sci & Technol,2018,84:1062−1069
    [24] ALI S, KUMAR D, KHADER M, et al. Synthesis and evaluation of lanthana modified Cu-based catalysts for CO2 hydrogenation to value added products[J]. Mol Catal,2023,543:113164
    [25] KOURTELESIS M, KOUSI K and KONDARIDES I. CO2 hydrogenation to methanol over La2O3 promoted CuO/ZnO/Al2O3 catalysts: A kinetic and mechanistic study[J]. Catalysts,2020,10:183 doi: 10.3390/catal10020183
    [26] ZHONG J, YANG X, WU Z, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem Soc Rev,2020,49:1385−1413 doi: 10.1039/C9CS00614A
    [27] CHEN K, YU J, LIU B, et al. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst[J]. J Catal,2019,372:163−173 doi: 10.1016/j.jcat.2019.02.035
    [28] HU W, DONAT F, SCOTT A, et al. The interaction between CuO and Al2O3 and the reactivity of copper aluminates below 1000 ℃ and the implication on the use of the Cu–Al–O system for oxygen storage and production[J]. RSC Adv,2016,6:113016−113024 doi: 10.1039/C6RA22712K
    [29] RAJESH C and RAON A Solid-state reaction based study synthesis and characterization for CuAl2O4 nanocrystalline powder[J]. Optik, 2023, 294 : 171472
    [30] TETSUJI Y , MAKOTO E, SHUICHI S, et al. Anomalous chemical shifts of Cu 2p and Cu LMM Auger spectra of silicate glasses[J]. J Electron Spectrosc, 2003, 131 : 133–144
    [31] CHEN K, FANG H, WU S et al. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu–LaO x interfaces[J]. Appl Catal B Environ,2019,251:119−129 doi: 10.1016/j.apcatb.2019.03.059
    [32] JI Y, LIN S, XU G, et al. Enhancing CO2 hydrogenation to methanol via constructing Cu–ZnO–La2O3 interfaces[J]. Catal Lett,2023,25:119−129
    [33] SUN X, JIN Y, CHENG Z, et al. Dual active sites over Cu-ZnO-ZrO2 catalysts for carbon dioxide hydrogenation to methanol[J]. J Environ Sci (China),2023,131:162−172 doi: 10.1016/j.jes.2022.10.002
    [34] ALVARO A, CARLOS A, MARTHA E, et al. XPS fitting model proposed to the study of Ni and La in deactivated FCC catalysts[J]. J Electron Spectrosc,2019,233:5−10 doi: 10.1016/j.elspec.2019.03.007
    [35] PAPARAZZO E. XPS, AES and EELS studies of Al surfaces[J]. Vacuum,2001,62:47−60 doi: 10.1016/S0042-207X(01)00123-3
    [36] ZHANG C, WANG L, ETIMU J, et al. Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol[J]. J Catal,2022,413:284−296 doi: 10.1016/j.jcat.2022.06.026
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  19
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-02-29
  • 录用日期:  2024-03-04
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回