留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吡啶在Ti、Zr、N掺杂石墨烯表面吸附的理论研究

王聚财 唐克 孙潇镝 洪新

王聚财, 唐克, 孙潇镝, 洪新. 吡啶在Ti、Zr、N掺杂石墨烯表面吸附的理论研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1162-1172. doi: 10.1016/S1872-5813(24)60440-8
引用本文: 王聚财, 唐克, 孙潇镝, 洪新. 吡啶在Ti、Zr、N掺杂石墨烯表面吸附的理论研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1162-1172. doi: 10.1016/S1872-5813(24)60440-8
WANG Jucai, TANG Ke, SUN Xiaodi, HONG Xin. Theoretical calculations of pyridine adsorption on the surfaces of Ti, Zr, N doped graphene[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1162-1172. doi: 10.1016/S1872-5813(24)60440-8
Citation: WANG Jucai, TANG Ke, SUN Xiaodi, HONG Xin. Theoretical calculations of pyridine adsorption on the surfaces of Ti, Zr, N doped graphene[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1162-1172. doi: 10.1016/S1872-5813(24)60440-8

吡啶在Ti、Zr、N掺杂石墨烯表面吸附的理论研究

doi: 10.1016/S1872-5813(24)60440-8
基金项目: 辽宁省自然科学基金(2019-ZD-0699)和辽宁省教育厅基本科研项目揭榜挂帅服务地方项目(JYTMS20230835)资助
详细信息
    通讯作者:

    E-mail: tangke0001@163.com

  • 中图分类号: TE626

Theoretical calculations of pyridine adsorption on the surfaces of Ti, Zr, N doped graphene

Funds: The project was supported by the Science and Technology Program of Liaoning Provincial (2019-ZD-0699) and Liaoning Provincial Department of Education basic research projects (JYTMS20230835).
  • 摘要: 采用密度泛函方法,研究了Ti、Zr和N掺杂及本征石墨烯对柴油中典型碱性氮化物吡啶的吸附行为,讨论了相应的吸附能、吸附构型、马利肯电荷转移、差分电荷密度和态密度。结果表明,金属Ti、Zr掺杂能显著增强吡啶在石墨烯表面的吸附能,非金属N掺杂可略微增加吡啶和石墨烯表面间的吸附能。吡啶在不同原子修饰的石墨烯表面的吸附能大小顺序为Ti掺杂石墨烯>Zr掺杂石墨烯>N掺杂石墨烯>本征石墨烯,吡啶可与Ti、Zr掺杂石墨烯发生N−Ti、N−Zr和π−π作用,与N掺杂石墨烯、本征石墨烯发生N−N、C−N和π−π作用。进一步分析发现,吡啶和金属Ti、Zr掺杂石墨烯表面存在明显的电子转移和化学键的形成,而和非金属N掺杂石墨烯及本征石墨烯间并无化学键形成。吡啶与Ti、Zr掺杂石墨烯发生化学吸附,与N掺杂石墨烯、本征石墨烯发生物理吸附。吡啶更稳定的吸附在Ti、Zr掺杂石墨烯表面。
  • FIG. 3304.  FIG. 3304.

    FIG. 3304.  FIG. 3304.

    图  1  Ti、Zr、N掺杂及本征石墨烯表面的球棍模型

    Figure  1  Ball and stick model of Ti, Zr or N-doped and intrinsic graphene(Ti, Zr, N, C atoms are represented by incanus, green, blue, grey, respectively)

    图  2  本征及掺杂石墨烯的态密度

    Figure  2  Density of states (DOS) of the Ti, Zr or N-doped and intrinsic graphene

    图  3  吡啶垂直吸附在各石墨烯表面的吸附构型

    Figure  3  Adsorption configuration of pyridine perpendicular adsorption on Ti, Zr or N-doped and intrinsic graphene(Ti, Zr, N, C and H atoms are represented by incanus, green, blue, grey and white, respectively)

    图  4  吡啶环平行吸附在各石墨烯表面的吸附构型

    Figure  4  Adsorption configuration of pyridine parallel (ring) adsorption on Ti, Zr or N-doped and intrinsic graphene(Ti, Zr, N, C and H atoms are represented by incanus, green, blue, grey and white, respectively)

    图  5  吡啶氮平行吸附在各石墨烯表面的吸附构型

    Figure  5  Adsorption configuration of pyridine-nitrogen atom parallel adsorption on Ti, Zr or N-doped and intrinsic graphene surfaces (Ti, Zr, N, C and H atoms are represented by incanus, green, blue, grey and white, respectively)

    图  6  吡啶吸附在各石墨烯表面吸附前后的态密度

    Figure  6  Total density of states of Ti, Zr or N-doped and intrinsic graphene and pyridine adsorption

    图  7  吡啶吸附在各石墨烯表面体系中吸附位点分波态密度

    Figure  7  Partial density of states of the pyridine-nitrogen atom and Ti, Zr, N and C in adsorption system

    图  8  吡啶吸附在各石墨烯表面的电子密度

    Figure  8  Isosurface of electron density of pyridine adsorption on Ti, Zr or N-doped and intrinsic graphene (Ti, Zr, N, C and H atoms are represented by incanus, green, blue, grey and white, respectively)

    图  9  吡啶吸附在各石墨烯表面的差分电荷密度

    Figure  9  Isosurface of differential charge density of pyridine adsorption on Ti, Zr or N-doped and intrinsic graphene (Ti, Zr, N, C and H atoms are represented by incanus, green, blue, grey and white, respectively)

    表  1  各石墨烯表面的几何参数

    Table  1  Geometrical parameters of the Ti, Zr or N-doped and intrinsic graphene

    Doped graphenes Bond length dC−x/nm Bond angle ∠C−X−C/(°)
    Ti-doped graphenes 0.1775−0.1778 119.905−120.048
    Zr-doped graphenes 0.1869−0.1871 119.836−120.082
    N-doped graphenes 0.1409−0.1411 119.997−120.006
    Intrinsic graphenes 0.1420 120
    下载: 导出CSV

    表  2  吡啶在各石墨烯表面上三种吸附构型的吸附能

    Table  2  Adsorption energy of pyridine adsorption on Ti, Zr or N-doped and intrinsic graphene

    Adsorption structure Energy/eV
    Ti-doped graphenes Zr-doped graphenes N-doped graphenes Intrinsic graphenes
    Vertical −1.857 −1.590 −0.499 −0.374
    Parallel (ring) −1.854 −1.583 −0.767 −0.736
    Parallel (N) −2.034 −1.853 −0.734 −0.672
    下载: 导出CSV

    表  3  吡啶在各石墨烯表面吸附前后吡啶的马利肯电荷布居

    Table  3  Mulliken charge of pyridine adsorption on Ti, Zr or N-doped and intrinsic graphene

    Atom or molecule Before adsorption/e After adsorption (Ti-GR)/e After adsorption (Zr-GR)/e After adsorption (N-GR)/e After adsorption (GR)/e
    s-orbital electron p-orbital electron Mulliken population s-orbital electron p-orbital electron Mulliken population s-orbital electron p-orbital electron Mulliken population s-orbital electron p-orbital electron Mulliken population s-orbital electron p-orbital electron Mulliken population
    C1 1.242 2.8 −0.042 1.236 2.819 −0.056 1.23 2.823 −0.053 1.242 2.798 −0.041 1.242 2.799 −0.04
    C2 1.242 2.834 −0.076 1.237 2.865 −0.101 1.23 2.867 −0.096 1.246 2.832 −0.076 1.245 2.832 −0.08
    C3 1.205 2.738 0.057 1.195 2.685 0.121 1.184 2.687 0.129 1.21 2.73 0.06 1.21 2.731 0.058
    N 1.59 3.705 −0.295 1.603 3.908 −0.511 1.602 3.929 −0.531 1.59 3.732 −0.322 1.591 3.709 −0.3
    C5 1.205 2.738 0.057 1.194 2.676 0.13 1.184 2.691 0.125 1.21 2.728 0.062 1.21 2.73 0.059
    C6 1.242 2.834 −0.076 1.237 2.865 −0.102 1.23 2.866 −0.095 1.246 2.832 −0.076 1.245 2.832 −0.08
    H7 0.923 0 0.077 0.87 0 0.13 0.876 0 0.124 0.918 0 0.082 0.921 0 0.079
    H8 0.925 0 0.075 0.868 0 0.132 0.874 0 0.126 0.92 0 0.08 0.923 0 0.077
    H9 0.925 0 0.075 0.859 0 0.141 0.872 0 0.128 0.917 0 0.083 0.921 0 0.079
    H10 0.925 0 0.075 0.854 0 0.146 0.872 0 0.128 0.918 0 0.082 0.922 0 0.078
    H11 0.925 0 0.075 0.868 0 0.132 0.874 0 0.126 0.92 0 0.08 0.923 0 0.077
    py 12.349 17.649 0.002 12.021 17.818 0.162 12.03 17.863 0.111 12.337 17.652 0.014 12.353 17.633 0.01
    下载: 导出CSV

    表  4  吡啶在各石墨烯表面吸附前后各石墨烯的马利肯电荷布居

    Table  4  Mulliken charge of Ti, Zr or N-doped and intrinsic graphene of pyridine before and after adsorption

    Atom or
    molecule
    Before adsorption/e After adsorption/e
    s-orbital electron p-orbital electron d-orbital electron Mulliken population s-orbital electron p-orbital electron d-orbital electron Mulliken population
    Ti 2.616 6.135 2.824 0.425 2.658 6.384 2.625 0.333
    Zr 2.471 6.015 2.786 0.728 2.747 6.317 2.394 0.541
    N 1.551 3.907 −0.458 1.542 3.87 −0.412
    C 1.301 2.699 0 1.302 2.665 0.032
    Ti-GR 0 −0.160
    Zr-GR 0 −0.109
    N-GR 0 −0.012
    GR 0 −0.008
    下载: 导出CSV
  • [1] 李玲. 燃油脱氮的可见光光催化剂制备及其性能研究[D]. 福州: 福建师范大学, 2013.

    LI Ling. Visible-light photocatalysts for denitrogenation of fuel oil: Preparation and characterization[D]. Fuzhou: Fujian Normal University, 2013.)
    [2] WU Y, XIAO J, WU L M, et al. Adsorptive denitrogenation of fuel over metal organic frameworks: Effect of N-types and adsorption mechanisms[J]. J Phys Chem C,2014,118(39):22533−22543. doi: 10.1021/jp5045817
    [3] AHMED I, KHAN N A, JHUNG S H. Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties[J]. Chem Eng J,2017,321(1):40−47.
    [4] ZHANG J, HUANG L, LIN X C, et al. Effective adsorptive denitrogenation from model fuels over CeY zeolite[J]. Ind Eng Chem Res,2022,61(39):14586−14597. doi: 10.1021/acs.iecr.2c01204
    [5] WEN J, LIN H F, HAN X, et al. Physicochemical studies of adsorptive denitrogenation by oxidized activated carbons[J]. Ind Eng Chem Res, 2017, 56(17): 5033-5041.
    [6] XIN H, ZAREEN Z, SHAFQAT A, et al. Adsorptive denitrogenation of model oil by MOF(Al)@GO composites: Remarkable adsorption capacity and high selectivity[J]. New J Chem,2023,47(7):3306−3311. doi: 10.1039/D2NJ06032A
    [7] LI Z M, LIANG H W, LI X L, et al. Adjusting surface acidity of hollow mesoporous carbon nanospheres for enhanced adsorptive denitrogenation of fuels[J]. Chem Eng Sci, 2020, 228 : 115963.
    [8] ARVIN S D, AMIR V, SAHAR B, et al. Deep denitrogenation of model diesel fuel using Ni-doped mesoporous carbon: synthesis route and adsorption study[J]. ChemistrySelect,2021,6(5):1073−1081. doi: 10.1002/slct.202004522
    [9] NARJES G, MUHIEDDINE A S, MOHAMMED S A, et al. Adsorptive denitrogenation of coker diesel over carbon-based adsorbents for producing ultralow-sulfur diesel[J]. Ind Eng Chem Res,2023,62(50):21777−21786. doi: 10.1021/acs.iecr.3c03424
    [10] 原卫华, 毕世华, 曹茂盛. 石墨烯吸附甲醛的第一性原理研究[J]. 材料导报,2015,29(18):156−159.

    YUAN Weihua, BI Shihua, CAO Maosheng. Formaldehyde molecule adsorbed on graphene: A first principles study[J]. Mater Rep,2015,29(18):156−159.
    [11] 罗慧娟. 石墨烯的结构掺杂及分子吸附性能研究[D]. 西安: 西北工业大学, 2017.

    LUO Hui-juan. Structural modifications and adsorption properties of graphene[D]. Xi’an: Northwestern Polytechnical University, 2017.)
    [12] ZHANG H P, HE W D, LUO X G, et al. Adsorption of 2, 3, 7, 8-tetrochlorodibenzo-p-dioxins on intrinsic, defected, and Ti (N, Ag) doped graphene: A DFT study[J]. J Mol Model,2014,20(5):1−7.
    [13] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys,1990,92(1):508−517. doi: 10.1063/1.458452
    [14] DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys,2000,113(18):7756−7764. doi: 10.1063/1.1316015
    [15] DELLEY B. DMol3 DFT studies: from molecules and molecular environments to surfaces and solids[J]. Comp Mater Sci,2000,17(2):122−126.
    [16] KRESSE G, FURTHMÜLLER J. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [17] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Phys Rev Lett, 2009, 102(7): 073005(1-4).
    [18] YOSHITAKA F, SUSUMU S. Formation, stabilities, and electronic properties of nitrogen defects in graphene[J]. Phys Rev B, 2011, 84(24): 245446(1-7).
    [19] WANG M H, GUO Y N, WANG Q, et al. Density functional theory study of interactions between glycine and TiO2/graphene nanocomposites[J]. Chem Phys Lett,2014,599(4):86−91.
    [20] ZHANG H P, LUO X G, LIN X Y, et al. Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets[J]. Int J Hydrogen Energy,2013,38(33):14269−14275. doi: 10.1016/j.ijhydene.2013.07.098
    [21] BEATRIZ C, VERONICA G, ANA E, et al. Covalent radii revisited[J]. Dalton Trans,2008,37(21):2832−2838.
    [22] LI J Y, HOU M L, CHEN Y Q, et al. Enhanced CO2 capture on graphene via N, S dual-doping[J]. Appl Surf Sci,2017,399(6):420−425.
    [23] HOU M L, ZHANG X, YUAN S D, et al. Double graphitic-N doping for enhanced catalytic oxidation activity of carbocatalysts[J]. Phys Chem Chem Phys,2019,21(10):5481−5488. doi: 10.1039/C8CP07317A
    [24] DAI J Y, YUAN J M, GIANNOZZI P. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study[J]. Appl Phys Lett, 2009, 95(23): 232105(1-3).
    [25] CHEN Y, LIU Y J, Wang H X, et al. Silicon-doped graphene: an effective and metal-free catalyst for NO reduction into N2O ?[J]. ACS Appl Mater Interfaces,2013,5(13):5994−6000. doi: 10.1021/am400563g
    [26] CHEN J H, CHEN H T. Computational explanation for interaction between amino acid and nitrogen-containing graphene[J]. Theor Chem Acc,2018,137(12):176−187. doi: 10.1007/s00214-018-2392-z
    [27] 李巧灵, 吴晓宇, 王学伟, 等. 多孔BN选择性去除燃油中硫化合物的密度泛函理论研究[J]. 化工学报,2020,71(10):4601−4610.

    LI Qiaoling, WU Xiaoyu, WANG Xuewei, et al. Porous BN for selective adsorption of sulfur-containing compounds from fuel oil: DFT study[J]. CIESC J,2020,71(10):4601−4610.
    [28] SANTIAGO A. A cartography of the van der Waals territories[J]. Dalton Trans,2013,42(24):8617−8636. doi: 10.1039/c3dt50599e
    [29] 厉志鹏, 牛胜利, 赵改菊, 等. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.1016/S1872-5813(20)30008-6

    LI Zhipeng, NIU Shengli, ZHAO Gaiju, et al. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.1016/S1872-5813(20)30008-6
    [30] 张文杰, 侯美伶, 周兴, 等. 基于第一性原理计算硫化氢(H2S)在Pt-graphene上的吸附性能和解离机理[J]. 燃料化学学报,2022,50(9):1211−1220.

    ZHANG Wenjie, HOU Meiling, ZHOU Xing, et al. A theoretical study of H2S adsorption and dissociation mechanism on defected graphene doped with Pt[J]. J Fuel Chem Technol,2022,50(9):1211−1220.
    [31] 王建辉, 崔建中, 王兴尧, 等. 无机化学[M]. 五版. 北京: 高等教育出版社, 2018.

    WANG Jianhui, CUI Jianzhong, WANG Xingxiao, et al. Inorganic Chemistry[M]. 5nd ed, Beijing: Higher Education Press, 2018.)
    [32] 柴汝宽, 刘月田, 杨莉, 等. 乙酸在方解石表面吸附的密度泛函研究[J]. 中南大学学报(自然科学版),2019,50(5):1252−1262.

    CHAI Rukuan, LIU Yuetian, YANG Li, et al. Density functional theory analysis of acetic acid adsorption on CaCO3(104) surface[J]. J Cent South Univ (Science and Technology),2019,50(5):1252−1262.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  38
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-26
  • 修回日期:  2024-02-08
  • 录用日期:  2024-03-04
  • 网络出版日期:  2024-04-03
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回