留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性炭和HY分子筛复合催化促进生物质热解挥发物转化机理研究

徐吉 吴博文 韩震 胡浩权 靳立军

徐吉, 吴博文, 韩震, 胡浩权, 靳立军. 活性炭和HY分子筛复合催化促进生物质热解挥发物转化机理研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60447-0
引用本文: 徐吉, 吴博文, 韩震, 胡浩权, 靳立军. 活性炭和HY分子筛复合催化促进生物质热解挥发物转化机理研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60447-0
XU Ji, WU Bowen, HAN Zhen, HU Haoquan, JIN Lijun. Catalytic conversion of biomass pyrolysis volatiles over composite catalysts of activated carbon and HY zeolite[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60447-0
Citation: XU Ji, WU Bowen, HAN Zhen, HU Haoquan, JIN Lijun. Catalytic conversion of biomass pyrolysis volatiles over composite catalysts of activated carbon and HY zeolite[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60447-0

活性炭和HY分子筛复合催化促进生物质热解挥发物转化机理研究

doi: 10.1016/S1872-5813(24)60447-0
基金项目: 国家自然科学基金(22178051)和中央高校基本科研业务费(DUT21TD103)资助
详细信息
    通讯作者:

    E-mail: ljin@dlut.edu.cn

  • 中图分类号: TK6

Catalytic conversion of biomass pyrolysis volatiles over composite catalysts of activated carbon and HY zeolite

Funds: The project was supported by the National Natural Science Foundation of China (22178051) and the Fundamental Research Funds for the Central Universities (DUT21TD103).
  • 摘要: 生物油组成复杂,含氧量较高,制约其高值化利用。本研究以商业活性炭(AC)和HY分子筛为复合催化剂,通过改变催化区的装填方式研究其对稻草和杨木屑两种典型生物质热解挥发物提质的影响规律。结果表明,AC和HY分子筛装填方式影响生物质热解产物分布和生物油组成。在HY与AC按1∶1比例均匀混合(YACM)作用后,生物油产率最低。但YACM方式有利于生物油的脱氧和芳香烃的生成,稻草和杨木屑热解生物油中的芳烃含量在YACM作用下可分别由提质前的13.8%和8.0%提高至56.4%和53.1%。上层HY分子筛和下层AC(YTACL)的催化方式有利于酚类物质生成。对单环芳烃的选择性遵循YTACL>ACTYL>YACM,而对双环芳烃的选择性为YACM>ACTYL>YTACL。分析认为,AC孔径较HY分子筛小,酸性低于分子筛,其活性中心有助于呋喃化合物重排生成环戊酮、2-环戊烯酮、甲基环戊烯酮,后重排形成苯酚,因此,YTACL的装填方式对苯酚、甲酚、甲苯、乙苯、对二甲苯的生成有较好的促进作用。HY分子筛的酸性强,有利于芳构化反应发生,因此,ACTYL装填方式表现出对萘、甲基萘、蒽、芘的生成较高的选择性。该工作为生物油的组成调控以及芳烃和酚类物质的富集等提供重要指导。
  • 图  1  两段式固定床反应装置图(a)和催化剂的装填方式(b)

    Figure  1  Diagram of two-stage fixed bed reaction device (a) and the loading models of catalysts (b)

    图  2  活性炭和HY分子筛的N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  2  N2 adsorption/desorption isotherms (a) and pore size distributions (b) of AC and HY zeolite catalysts

    图  3  活性炭和HY的NH3-TPD谱图

    Figure  3  NH3-TPD curves of AC and HY catalysts

    图  4  催化剂装填方式对RS(a)和PS(b)热解产物分布的影响

    Figure  4  Effect of loading modes of catalysts on the products distribution of RS (a) and PS (b) pyrolysis

    图  5  催化剂装填方式对RS(a)和PS(b)热解气体产率的影响

    Figure  5  Influence of loading modes of catalyst on the gas yields from RS (a) and PS (b) pyrolysis

    图  6  催化剂装填方式对RS(a)、(c)、(e)和PS(b)、(d)、(f)热解焦油主要组成的影响

    Figure  6  Effect of the loading modes of catalyst on tar composition from pyrolysis of RS (a), (c), (e) and PS (b), (d), (f)

    图  7  活性炭和HY分子筛催化提质反应路径示意图

    Figure  7  Possible reaction pathways for pyrolysis compounds over AC and HY zeolite catalysts

    表  1  生物质样品的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of raw biomasses

    Sample Proximate analysis w/% Ultimate analysis wdaf/%
    Mad Ad Vdaf C H N S O*
    RS 1.24 21.38 83.26 49.77 7.13 1.91 0.08 41.11
    PS 0.08 12.39 85.08 48.33 6.68 0.83 0.13 44.03
    ad: air dry basis; d: dry basis; daf: dry ash-free basis; *: by difference.
    下载: 导出CSV

    表  2  活性炭和HY分子筛的表面性质

    Table  2  Surface properties of AC and HY zeolite catalysts

    Sample S/(m2·g−1) v/(cm3·g−1) Dave/
    nm
    SBET Smic Smeso vt vmic vmeso
    AC 910 405 505 0.69 0.19 0.50 4.1
    HY 522 410 112 0.43 0.20 0.22 6.5
    下载: 导出CSV
  • [1] LIU J P, CHEN X, CHEN W, et al. Biomass pyrolysis mechanism for carbon-based high-value products[J]. Proc Combust Inst,2023,39(3):3157−3181. doi: 10.1016/j.proci.2022.09.063
    [2] 中国产业发展促进会生物质能产业分会. 2023中国生物质能产业发展年鉴 [M]. 1版. 北京: 中国产业发展促进会, 2023.

    CHINA Association for the Promotion of Industrial Development. 2023 China biomass energy Industry development Yearbook[M]. 1st ed. Beijing: China Association for the Promotion of Industrial Development, 2023.)
    [3] RIJO B, DIAS A, RAMOS M, et al. Valorization of forest waste biomass by catalyzed pyrolysis[J]. Energy,2022,243:122766. doi: 10.1016/j.energy.2021.122766
    [4] 刘宁, 史成香, 潘伦, 等. 生物质替代石油原料合成高密度燃料的研究进展[J]. 燃料化学学报,2021,49(12):1780−1790. doi: 10.19906/j.cnki.jfct.2021076

    LIU Ning, SHI Chengxiang, PAN Lun, et al. Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels[J]. J Fuel Chem Technol,2021,49(12):1780−1790. doi: 10.19906/j.cnki.jfct.2021076
    [5] 王卓智, 张雷, 熊立夫, 等. 烘焙预处理对稻壳燃料品质及热解特性的调控机制研究[J]. 燃料化学学报,2023,51(3):320−329. doi: 10.19906/j.cnki.jfct.2022058

    WANG Zhuozhi, ZHANG Lei, XIONG Lifu, et al. Study on the regulation mechanism of torrefaction pretreatment on fuel quality and pyrolysis characteristics of rice husk[J]. J Fuel Chem Technol,2023,51(3):320−329. doi: 10.19906/j.cnki.jfct.2022058
    [6] 蔡伟, 黄明, 朱亮, 等. 杨木湿法烘焙预处理耦合金属改性多级孔分子筛催化热解制取轻质芳烃[J]. 燃料化学学报(中英文),2023,51(8):1126−1136. doi: 10.19906/j.cnki.jfct.2023004

    CAI Wei, HUANG Ming, ZHU Liang, et al. Enhancement of the production of light aromatics from poplar wood by combined approach of wet torrefaction pretreatment and catalytic fast pyrolysis using metal modified hierarchical zeolite[J]. J Fuel Chem Technol,2023,51(8):1126−1136. doi: 10.19906/j.cnki.jfct.2023004
    [7] MOHAN I, PANDA A K, VOLLI V, et al. An insight on upgrading of biomass pyrolysis products and utilization: Current status and future prospect of biomass in India[J]. Biomass Convers Bior, 2022.
    [8] LIU J C, ZHANG T, DEN J, et al. Effect of sulfur and carbon in the pyrolysis volatiles on the activity of Fe-Ni/ biochar[J]. Fuel Process Technol,2023,244:107720. doi: 10.1016/j.fuproc.2023.107720
    [9] HU B, ZHANG Z X, XIE W L, et al. Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds[J]. Fuel Processing Technol,2022,237:107465. doi: 10.1016/j.fuproc.2022.107465
    [10] PAN Y H, SIMA J Y, WANG X W, et al. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char[J]. Waste Manage,2021,131:214−225. doi: 10.1016/j.wasman.2021.06.013
    [11] 苏银海, 张书平, 刘凌沁, 等. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报,2021,72(10):5206−5217.

    SU Yinhai, ZHANG Shuping, LIU Lingqin, et. al. Synergetic production of phenols and syngas from the catalytic pyrolysis of cellulose on activated carbon[J]. CIESC J,2021,72(10):5206−5217.
    [12] FERMANELLI C S, PIERELLA L B, SAUX C. Comparative study of zeolites matrices in bio-wastes pyrolytic valorization[J]. Process Saf Environ,2021,147:808−817. doi: 10.1016/j.psep.2021.01.013
    [13] MA Y Y, LI H J, YANG H Q, et al. Effects of solid acid and base catalysts on pyrolysis of rice straw and wheat straw biomass for hydrocarbon production[J]. J Energy Inst,2022,101:140−148. https://10.1016/j.joei.2021.08.010.
    [14] JIANG G C, HU Y H, XU G Q, et al. Controlled hydrodeoxygenation of phenolic components in pyrolysis bio-oil to arenes[J]. ACS Sustain Chem Eng,2018,6(5):5772−5783. doi: 10.1021/acssuschemeng.7b03276
    [15] WU R F, LV P, WANG J F, et al. Catalytic upgrading of cow manure pyrolysis vapors over zeolite/carbon composites prepared from coal gasification fine slag: High quality bio-oil obtaining and mechanism investigation[J]. Fuel,2023,339:126941. doi: 10.1016/j.fuel.2022.126941
    [16] CHEN C X, WEI D N, ZHAO J, et al. Study on co-pyrolysis and products of Chlorella vulgaris and rice straw catalyzed by activated carbon/HZSM-5 additives[J]. Bioresource Technol,2022,360:127594. doi: 10.1016/j.biortech.2022.127594
    [17] JIA Y M, SHI Q H, WANG J W, et al. Synthesis, characterization, and catalytic application of hierarchical nano-ZSM-5 zeolite[J]. RSC ADVANCES,2020,10(50):29618−29626.
    [18] TANG Z Y, CHEN W, CHEN Y Q, et al. Preparation of low-nitrogen and high-quality bio-oil from microalgae catalytic pyrolysis with zeolites and activated carbon[J]. J Anal Appl Pyrolysis,2021,159:105182. doi: 10.1016/j.jaap.2021.105182
    [19] ZHANG X S, LEI H W, WANG L, et al. Renewable gasoline-range aromatics and hydrogen-enriched fuel gas from biomass via catalytic microwave-induced pyrolysis[J]. Green Chem,2015,17(7):4029−4036. doi: 10.1039/c5gc00516g
    [20] MATVEENKO E S, GRIGORIEV M V, KREMLEVA T A, et al. Methods for studies of reactions on zeolite catalysts occurring by the hydrocarbon pool mechanism[J]. Kinet Catal+,2022,63(4):351−363. doi: 10.1134/S0023158422040061
    [21] WENG J J, CHENG Z J, ZHANG Y, et al. Online evaluation of catalytic co-pyrolysis of hemicellulose and polypropylene over CaO catalyst[J]. Fuel,2023,332:125993. doi: 10.1016/j.fuel.2022.125993
    [22] HUO E G, LEI H W, LIU C, et al. Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO[J]. Sci Total Environ,2020,727:138411. doi: 10.1016/j.scitotenv.2020.138411
    [23] LI P, WAN K, CHEN H, et al. Value-added products from catalytic pyrolysis of lignocellulosic biomass and waste plastics over biochar-based catalyst: A state-of-the-art review[J]. Catalysts,2022,12(9):1067. doi: 10.3390/catal12091067
    [24] LIN X A, CHEN X Y, FU P, et al. Highly efficient production of monocyclic aromatics from catalytic co-pyrolysis of biomass and plastic with nitrogen-doped activated carbon catalyst[J]. Chem Eng J,2023,474:145783. doi: 10.1016/j.cej.2023.145783
    [25] ZHANG Y Y, LEI H W, YANG Z X, et al. From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production via catalytic pyrolysis over an activated carbon catalyst[J]. Green Chem,2018,20(14):3346−3358. doi: 10.1039/c8gc00593a
    [26] HU J, CHEN L, CHEN P Z, et al. One-pot cogeneration of phenol-rich bio-oil, hydrogen-rich gas and solid carbon degradation material from reed[J]. Fuel Process Technol,2023,250:107912. doi: 10.1016/j.fuproc.2023.107912
    [27] AN Y, DOU J X, TIAN L, et al. Role of microwave during microwave-assisted catalytic reforming of guaiacol, syringolbio-oil as model compounds[J]. J Anal Appl Pyrolysis,2021,158:105290. doi: 10.1016/j.jaap.2021.105290
    [28] LIU S S, WU G, ZHANG L, et al. Catalytic pyrolysis of pine sawdust over activated carbon-supported Fe for phenol-rich bio-oil[J]. J Anal Appl Pyrol,2023,171:105959. doi: 10.1016/j.jaap.2023.105959
    [29] YANG H M, HAN T, SHI Z Y, et al. In situ catalytic fast pyrolysis of lignin over biochar and activated carbon derived from the identical process[J]. Fuel Process Technol,2022,227:107103. doi: 10.1016/j.fuproc.2021.107103
    [30] WANG K G, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chem,2014,16(2):727−735. doi: 10.1039/c3gc41288a
    [31] MUKARAKATE C, MCBRAYER J D, EVANS T J, et al. Catalytic fast pyrolysis of biomass: the reactions of water and aromatic intermediates produces phenols[J]. Green Chem,2015,17(8):4217−4227. https://10.1039/c5gc00805k.
    [32] HAN T, DING S M, YANG W H, et al. Catalytic pyrolysis of lignin using low-cost materials with different acidities and textural properties as catalysts[J]. Chem Eng J,2019,373:846−856. doi: 10.1016/j.cej.2019.05.125
    [33] ZHENG Y W, WANG F, YANG X Q, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. J Anal Appl Pyrolysis,2017,126:169−179. doi: 10.1016/j.jaap.2017.06.011
    [34] BEN H X, RAGAUSKAS A J. Influence of Si/Al ratio of ZSM-5 zeolite on the properties of lignin pyrolysis products[J]. ACS Sustain Chem Eng,2013,1(3):316−324. doi: 10.1021/sc300074n
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  22
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-03-28
  • 录用日期:  2024-03-28
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回