留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO、CO2及其混合物加氢转化制甲烷的热力学平衡研究

王晗 郭淑佳 秦张峰 李志凯 王国富 董梅 樊卫斌 王建国

王晗, 郭淑佳, 秦张峰, 李志凯, 王国富, 董梅, 樊卫斌, 王建国. CO、CO2及其混合物加氢转化制甲烷的热力学平衡研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60449-4
引用本文: 王晗, 郭淑佳, 秦张峰, 李志凯, 王国富, 董梅, 樊卫斌, 王建国. CO、CO2及其混合物加氢转化制甲烷的热力学平衡研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60449-4
WANG Han, GUO Shujia, QIN Zhangfeng, LI Zhikai, WANG Guofu, DONG Mei, FAN Weibin, WANG Jianguo. A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60449-4
Citation: WANG Han, GUO Shujia, QIN Zhangfeng, LI Zhikai, WANG Guofu, DONG Mei, FAN Weibin, WANG Jianguo. A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60449-4

CO、CO2及其混合物加氢转化制甲烷的热力学平衡研究

doi: 10.1016/S1872-5813(24)60449-4
基金项目: 国家重点研发计划(2020YFB0606404)和国家自然科学基金(21991092,22272195,U2003123,U1910203)资助.
详细信息
    通讯作者:

    E-mail: qzhf@sxicc.ac.cn (QIN Z F)

    lizhikai@sxicc.ac.cn (LI Z K)

  • #:共同第一作者
  • 中图分类号: O643.36

A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation

Funds: The project was supported by the National Key Research and Development Program of China (2020YFB0606404) and National Natural Science Foundation of China (21991092, 22272195, U2003123, U1910203).
  • 摘要: 由CO和CO2加氢制甲烷是目前氢能储存及燃料和化学品可持续生产的有效途径之一,但目前对该反应过程(尤其是针对CO和CO2混合物加氢)的一些细节尚不明晰。为此,作为前期有关CO和CO2加氢制烯烃和醇研究工作的补充,本工作对CO和CO2,尤其是两者混合物的加氢制甲烷反应过程进行了热力学分析。结果证实,与单独CO或CO2相比,二者混合物加氢制甲烷更为合适,总碳基甲烷收率可作为评估甲烷合成反应过程效率的重要指标。CO加氢的甲烷平衡收率比CO2加氢的高,而CO和CO2混合物加氢的总碳基甲烷平衡收率位于两者之间;对于CO和CO2混合物加氢,尽管CO和CO2的平衡转化率随进料组成不同会有很大的变化,但其总碳基甲烷平衡收率随着原料中CO2/(CO+CO2)物质的量比的增大而线形降低。整体上看,在温度低于400 ℃和压力高于0.1 MPa时,无论是CO、CO2、还是两者混合物的化学计量比加氢,其总碳基甲烷平衡收率均高于85%。这些结果无疑对高效CO和CO2加氢制甲烷催化剂研制及反应过程的设计和操作优化有重要的参考价值。
    1)  #:共同第一作者
  • 图  1  CO和CO2加氢制甲烷过程中所涉及的各种反应(表1)的吉布斯自由能(ΔrG0)随温度的变化

    Figure  1  Variance of Gibbs free energies (ΔrG0) of various reactions involved in the hydrogenation of CO and CO2 to methane (R1−R8, Table 1) with the reaction temperature

    图  2  化学计量比的氢气存在下,CO和CO2混合物加氢制甲烷反应过程中,甲烷的总碳基平衡收率、CO转化率和CO2转化率随温度、压力和进料组成的变化

    Figure  2  Overall C-based equilibrium methane yield, CO conversion, and CO2 conversion for the hydrogenation of the CO and CO2 mixture to methane by using stoichiometric amount of H2 in the feed, via the reactions of R1 and R2, where the WGS reaction of R4 or the reverse one (RWGS) as a nonindependent reaction occurs inevitably. Depending on the CO2/(CO+CO2) molar ratio (z), the initial reaction mixture has a H2∶CO∶CO2 molar ratio of (3+z)∶(1−z)∶z. For the hydrogenation of single CO (CO2/(CO+CO2) = 0), the equilibrium selectivity to CO2 is displayed instead of the equilibrium CO2 conversion, whereas for the hydrogenation of single CO2 (CO2/(CO+CO2) = 1), the equilibrium selectivity to CO is shown instead of the equilibrium CO conversion

    图  3  化学计量比的氢气存在下,CO和CO2混合物加氢制甲烷反应过程中,甲烷的总碳基平衡收率、CO转化率和CO2转化率随反应混合物进料组成的变化

    Figure  3  Overall C-based equilibrium methane yield, CO conversion, and CO2 conversion varied with the feed CO2/(CO+CO2) molar ratio (z) for the hydrogenation of CO and CO2 mixture into methane by using stoichiometric amount of H2 in the feed, at 350 ℃ and different pressures (left) and at 0.1 MPa and different temperatures (right), via the reactions of R1 and R2, where the WGS reaction of R4 or the reverse one (RWGS) as a nonindependent reaction occurs inevitably; the initial reaction mixture has a H2∶CO∶CO2 molar ratio of (3+z)∶(1−z)∶z

    图  4  低H/C比下,CO和CO2混合物加氢制甲烷反应过程中,甲烷的总碳基平衡收率、CO转化率和CO2转化率随温度、压力和进料组成的变化

    Figure  4  Overall C-based equilibrium methane yield, CO conversion, and CO2 conversion for the hydrogenation of the CO and CO2 mixture to methane by using H2-deficient feed, via the reactions of R1 and R2, where the WGS reaction of R4 or the reverse one (RWGS) as a nonindependent reaction occurs inevitably. The initial reaction mixture has a H2/(CO+CO2) molar ratio of 2. For the hydrogenation of single CO (CO2/(CO+CO2) = 0),the equilibrium selectivity to CO2 is displayed instead of the equilibrium CO2 conversion, whereas for the hydrogenation of single CO2 (CO2/(CO+CO2) = 1), the equilibrium selectivity to CO is shown instead of the equilibrium CO conversion.

    图  5  低H/C比下,CO和CO2混合物加氢制甲烷反应过程中,甲烷的总碳基平衡收率、CO转化率和CO2转化率随反应混合物进料组成的变化

    Figure  5  Overall C-based equilibrium methane yield, CO conversion, and CO2 conversion varied with the feed CO2/(CO+CO2) molar ratio (z) for the hydrogenation of CO and CO2 mixture into methane by using H2-deficient feed, at 350 ℃ and different pressures (left) and at 0.1 MPa and different temperatures (right), via the reactions of R1 and R2, where the WGS reaction of R4 or the reverse one (RWGS) as a nonindependent reaction occurs inevitably. The initial reaction mixture has a H2/(CO+CO2) molar ratio of 2.

    图  6  高H/C比下,CO和CO2混合物加氢制甲烷反应过程中,甲烷的总碳基平衡收率、CO转化率和CO2转化率随温度、压力和进料组成的变化

    Figure  6  Overall C-based equilibrium methane yield, CO conversion, and CO2 conversion for the hydrogenation of the CO and CO2 mixture to methane by using the feed with H2 in surplus, via the reactions of R1 and R2, where the WGS reaction of R4 or the reverse one (RWGS) as a nonindependent reaction occurs inevitably. The initial reaction mixture has a H2/(CO+CO2) molar ratio of 5. For the hydrogenation of single CO (CO2/(CO+CO2) = 0), the equilibrium selectivity to CO2 is displayed instead of the equilibrium CO2 conversion, whereas for the hydrogenation of single CO2 (CO2/(CO+CO2) = 1), the equilibrium selectivity to CO is presented instead of the equilibrium CO conversion.

    图  7  高H/C比下,CO和CO2混合物加氢制甲烷反应过程中,甲烷的总碳基平衡收率、CO转化率和CO2转化率随反应混合物进料组成的变化

    Figure  7  Overall C-based equilibrium methane yield, CO conversion, and CO2 conversion varied with the feed CO2/(CO+CO2) molar ratio (z) for the hydrogenation of CO and CO2 mixture into methane by using the feed with H2 in surplus, at 350 ℃ and different pressures (left) and at 0.1 MPa and different temperatures (right), via the reactions of R1 and R2, where the WGS reaction of R4 or the reverse one (RWGS) as a nonindependent reaction occurs inevitably. The initial reaction mixture has a H2/(CO+CO2) molar ratio of 5.

    表  1  CO和CO2加氢制甲烷过程中涉及的主要反应及其相关的基本热力学数据

    Table  1  Thermodynamic data of various reactions involved in the hydrogenation of CO and CO2 to methane

    Entry Reaction ΔrH0298K/(kJ·mol−1) ΔrS0298K/(J K−1·mol−1) ΔrG0298K/(kJ·mol−1) n(H2)/n(COx) Rv
    R1 CO + 3H2 = CH4 + H2O −206.14 −214.63 −142.15 3 0.5
    R2 CO2 + 4H2 = CH4 + 2H2O −164.98 −172.56 −113.53 4 0.6
    R3 CO = 1/2C + 1/2CO2 −86.23 −87.93 −60.01 0.5
    R4 CO + H2O = CO2 + H2 −41.17 −42.08 −28.62 1 1
    R5 CH4 = C + 2H2 74.85 80.84 50.75 2
    R6 C + 2H2O = CO2 + 2H2 90.13 91.72 62.78 2 1.5
    R7 1/2CO2 + 1/2CH4 = CO + H2 123.65 128.35 85.39 1 2
    R8 C + H2O = CO + H2 131.29 133.79 91.40 1 2
    Notes: n(H2)/n(COx) is the stoichiometric H2/CO or H2/CO2 molar ratio in the reactants or products; Rv is the stoichiometric volume-expanding or molecule-increasing factor, defined as the number of gaseous product molecules divided by the number of gaseous. reactant molecules for the corresponding reaction.
    下载: 导出CSV
  • [1] ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [2] WANG H, FAN S, WANG S, et al. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [3] MEMON M A, JIANG Y, HASSAN M A, et al. Heterogeneous catalysts for carbon dioxide methanation: A view on catalytic performance[J]. Catalysts,2023,13(12):1514. doi: 10.3390/catal13121514
    [4] BUSHUYEV O S, de LUNA P, DINH C T, et al. What should we make with CO2 and how can we make it?[J]. Joule,2018,2(5):825−832. doi: 10.1016/j.joule.2017.09.003
    [5] RA E C, KIM K Y, KIM E H, et al. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives[J]. ACS Catal,2020,10(19):11318−11345. doi: 10.1021/acscatal.0c02930
    [6] GAO J, WANG Y, PING Y, et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas[J]. RSC Adv,2012,2(6):2358−2368. doi: 10.1039/c2ra00632d
    [7] GUO S, WANG H, QIN Z, et al. Feasibility, limit, and suitable reaction conditions for the production of alcohols and hydrocarbons from CO and CO2 through hydrogenation, a thermodynamic consideration[J]. Ind Eng Chem Res,2022,61(46):17027−17038. doi: 10.1021/acs.iecr.2c02898
    [8] GUO S, WANG H, QIN Z, et al. Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration[J]. J Fuel Chem Technol,2023,51(4):482−491. doi: 10.1016/S1872-5813(23)60346-9
    [9] POLING B E, PRAUSNITZ J M, O’CONNELL J P. The Properties of Gases and Liquids [M]. Fifth Edition. McGraw-Hill: New York, 2004.
    [10] YAWS C L. Chemical Properties Handbook [M]. McGraw-Hill: Beijing, 1999.
    [11] LIU J, QIN Z, WANG J. Methanol synthesis under supercritical conditions: calculations of equilibrium conversions by using the Soave-Redlich-Kwong equation of state[J]. Ind Eng Chem Res,2001,40(17):3801−3805. doi: 10.1021/ie0100479
    [12] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chem Eng Sci,1972,27(6):1197−1203. doi: 10.1016/0009-2509(72)80096-4
    [13] GRAAF G H, SIJTSEMA P J J M, STAMHUIS E J, et al. Chemical equilibria in methanol synthesis[J]. Chem Eng Sci,1986,41(11):2883−2890. doi: 10.1016/0009-2509(86)80019-7
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  30
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2024-04-05
  • 网络出版日期:  2024-05-23

目录

    /

    返回文章
    返回