留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt/CoxAl催化剂上乙酰丙酸甲酯加氢与甲醇水液相重整反应耦合制备γ-戊内酯

吕泽祥 朱善辉 董梅 秦张峰 樊卫斌 王建国

吕泽祥, 朱善辉, 董梅, 秦张峰, 樊卫斌, 王建国. Pt/CoxAl催化剂上乙酰丙酸甲酯加氢与甲醇水液相重整反应耦合制备γ-戊内酯[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60453-6
引用本文: 吕泽祥, 朱善辉, 董梅, 秦张峰, 樊卫斌, 王建国. Pt/CoxAl催化剂上乙酰丙酸甲酯加氢与甲醇水液相重整反应耦合制备γ-戊内酯[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60453-6
LÜ Zexiang, ZHU Shanhui, DONG Mei, QIN Zhangfeng, FAN Weibin, WANG Jianguo. Synthesis of γ-valerolactone through coupling of methyl levulinate hydrogenation with aqueous phase reforming of methanol over Pt/CoxAl catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60453-6
Citation: LÜ Zexiang, ZHU Shanhui, DONG Mei, QIN Zhangfeng, FAN Weibin, WANG Jianguo. Synthesis of γ-valerolactone through coupling of methyl levulinate hydrogenation with aqueous phase reforming of methanol over Pt/CoxAl catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60453-6

Pt/CoxAl催化剂上乙酰丙酸甲酯加氢与甲醇水液相重整反应耦合制备γ-戊内酯

doi: 10.1016/S1872-5813(24)60453-6
基金项目: 国家自然科学基金(22278416),山西省基础研究计划(202203021212326)和中国科学院山西煤炭化学研究所自主创新基金(SCIC-DT-2023-02))资助
详细信息
    通讯作者:

    E-mail: zhushanhui@sxicc.ac.cn (ZHU S)

    iccjgw@sxicc.ac.cn (WANG J)

  • 中图分类号: O643

Synthesis of γ-valerolactone through coupling of methyl levulinate hydrogenation with aqueous phase reforming of methanol over Pt/CoxAl catalyst

Funds: The project was supported by National Natural Science Foundation of China (22278416) and Fundamental Research Program of Shanxi Province (202203021212326) and ICC CAS (SCJC-DT-2023-02).
  • 摘要: 生物质衍生物乙酰丙酸甲酯(ML)加氢制备高值化学品γ-戊内酯(GVL)通常需要在高压氢气中进行,存在成本高和危险性大等问题。本研究采用Pt/CoxAl催化剂,将ML加氢反应与甲醇水液相重整(APRM)相耦合制备GVL,甲醇重整所获得的氢气原位用于ML的加氢反应,避免了外部氢源的使用,并详细考察了催化剂组成、反应溶液浓度和反应温度等条件对催化反应性能的影响。结果表明,Pt/CoxAl催化剂在该耦合反应体系中具有优异的催化性能,GVL收率高达98.2%,且多次循环后性能仍保持稳定。多种表征手段证明,Pt0是ARPM和ML加氢反应的活性中心,Brønsted酸位点则促进ML水解和中间体的内酯化反应,两者之间的协同作用推动了GVL的生成。Pt与CoxAl载体之间存在强相互作用,Co含量适宜时,Pt/CoxAl催化剂具有较高的Pt分散度和丰富的Brønsted酸位点,因而表现出优异的催化性能。这些结果对探索新型高效的生物质衍生物制备燃料和化学品反应过程具有重要的参考价值。
  • 图  1  CoxAl载体和对应Pt/CoxAl催化剂的XRD谱图

    Figure  1  XRD patterns of various CoxAl supports and corresponding Pt/CoxAl catalysts

    图  2  Pt/CoxAl催化剂的TEM图像(a)和Pt/Co1Al的Mapping图像(b)

    Figure  2  TEM images of various Pt/CoxAl catalysts (a) and mapping images of Pt/Co1Al (b)

    图  3  Pt/CoxAl催化剂的H2-TPR (a)、CO2-TPD (b)、NH3-TPD (c)和Py-FTIR图 (d)

    Figure  3  H2-TPR profiles (a), CO2-TPD profiles (b), NH3-TPD profiles (c), and Py-FTIR spectra (d) of various Pt/CoxAl catalysts

    图  4  Pt/CoxAl催化剂的CO原位DRIFTS吸附谱图

    Figure  4  In situ DRIFTS spectra of CO adsorption over various Pt/CoxAl catalysts

    图  5  Pt/CoxAl催化剂的Al 2p/Pt 4f (a)、Co 2p (b)及O 1s (c) XPS谱图

    Figure  5  XPS spectra of various Pt/CoxAl catalysts in the region of Al 2p/Pt 4f (a), Co 2p (b) and O1s (c)

    图  6  不同Pt/CoxAl催化剂上APRM耦合ML加氢的(a)反应性能,(b)H2产量,及不同浓度甲醇溶液中,Pt/Co0.5Al催化剂(c)反应性能,(d)H2产量

    Figure  6  (a) Catalytic performance and (b) H2 production over various Pt/CoxA catalysts for coupling of ML hydrogenation with APRM; (c) catalytic performance and (d) H2 production on the Pt/Co0.5Al catalyst for ML hydrogenation coupled with APRM with different methanol concentrations

    图  7  Pt/Co1Al催化剂上反应时间和温度对反应性能(a, c)及H2产量(b, d)的影响

    Figure  7  Effect of reaction time and temperature on the yield of GVL (a、c) and H2 production (b、d) for the ML hydrogenation coupled with APRM over the Pt/Co1Al catalyst.

    图  8  Pt/Co1Al催化剂上ML原位加氢DRIFTS光谱谱图(a)和吸收带强度随温度演变趋势(b)

    Figure  8  In situ DRIFTS spectra of ML hydrogenation (a) and evolution of bands intensity with temperature (b) on Pt/Co1Al

    图  9  Pt/Co1Al催化剂循环使用性能

    Figure  9  Recyclability of the Pt/Co1Al catalyst for the ML hydrogenation coupled with APRM

    表  1  Pt/CoxAl催化剂的载体粒径、Pt负载量及Co/Al物质的量比

    Table  1  Particle size of the CoxAl supports and Pt loading and Co/Al molar ratio of the Pt/CoxAl catalysts

    Sample Pt/% Co/Al
    by ICP
    Co/Al
    by XPS
    Support particle size
    before loading Pt/nm
    Support particle size
    after loading Pt/nm
    Pt/Al2O3 0.95
    Pt/Co0.25Al 0.95 0.24 0.19 11.6 10.6
    Pt/Co0.5Al 0.95 0.51 0.24 17.1 15.8
    Pt/Co0.75Al 0.96 0.73 0.37 20.6 17.2
    Pt/Co1Al 0.93 0.96 0.51 31.1 23.0
    下载: 导出CSV

    表  2  Pt/CoxAl催化剂的酸碱性质

    Table  2  Acidity/basicity of various Pt/CoxAl catalysts

    Sample Basicity by CO2-TPD/
    (μmol·g−1)
    Acidity by NH3-TPD/
    (μmol·g−1)
    Acidity by Py-FTIR/(μmol·g−1)
    Brønsted Lewis
    Pt/Al2O3 1838 849 3.68 239.9
    Pt/Co0.25Al 1481 570 4.49 159.4
    Pt/Co0.5Al 1469 534 5.86 108.1
    Pt/Co0.75Al 754 532 7.72 100.3
    Pt/Co1Al 659 412 9.94 73.5
    下载: 导出CSV

    表  3  Pt分散度、CO原位吸附DRIFTS实验及XPS测得的表面Pt相对含量

    Table  3  Pt dispersion and relative Pt content determined by CO in situ DRIFTS and XPS

    Sample Pt dispersion/% Peak area of CO adsorption nPt/nPtCoAl/%
    Pt/Al2O3 42.7 4.1 0.28
    Pt/Co0.25Al 31.8 3.2 0.40
    Pt/Co0.5Al 37.9 11.6 0.72
    Pt/Co0.75Al 49.9 17.9 1.44
    Pt/Co1Al 66.8 27.0 1.78
    下载: 导出CSV
  • [1] Li X, Zhang L, Wang S, Wu Y. Recent advances in aqueous-phase catalytic conversions of biomass platform chemicals over heterogeneous catalysts. Front Chem, 2019, 7: 948–968.
    [2] Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem, 2010, 12(4): 539–554.
    [3] Yu Z, Lu X, Liu C, et al. Synthesis of γ-valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems. Renewable Sustainable Energy Rev, 2019, 112: 140–157.
    [4] Worsley C, Raptis D, Meroni S, et al. γ‐Valerolactone: A nontoxic green solvent for highly stable printed mesoporous perovskite solar cells. Energy Technol, 2021, 9(7): 2100312–2100321.
    [5] Zhang Z. Synthesis of gamma-valerolactone from carbohydrates and its applications. ChemSusChem, 2016, 9(2): 156–171.
    [6] Kang S, Yu J. Effect of methanol on formation of levulinates from cellulosic biomass. Ind Eng Chem Res, 2015, 54(46): 11552–11559.
    [7] Shan J, Wang Q, Hao H, Guo H. Critical review on the synthesis of levulinate esters from biomass-based feedstocks and their application. Ind Eng Chem Res, 2023, 62(42): 17135–17147.
    [8] Negahdar L, Al-Shaal M G, Holzhäuser F J, Palkovits R. Kinetic analysis of the catalytic hydrogenation of alkyl levulinates to γ-valerolactone. Chem Eng Sci, 2017, 158: 545–551.
    [9] Zhao D, Su T, Rodríguez-Padrón D, et al. Efficient transfer hydrogenation of alkyl levulinates to γ-valerolactone catalyzed by simple Zr–TiO2 metal oxide systems. Mater Today Chem, 2022, 24: 100745–100756.
    [10] Wang Y, Plazl I, Vernières-Hassimi L, et al. From calorimetry to thermal risk assessment: γ-Valerolactone production from the hydrogenation of alkyl levulinates. Process Saf Environ Prot, 2020, 144: 32–41.
    [11] Yan K, Yang Y, Chai J, et al. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Appl Catal B: Environ, 2015, 179: 292–304.
    [12] Yu X, Liu J, Ru C, et al. Lattice expansion and electronic reconfiguration of MnCu oxide catalysts for enhanced transfer hydrogenation of levulinate. ACS Sustainable Chem Eng, 2022, 10(40): 13402–13414.
    [13] González G, Area M C. An overview of the obtaining of biomass-derived gamma-valerolactone from levulinic acid or esters without H2 supply. BioResources, 2021, 16(4): 8417–8444.
    [14] Gautam P, Neha, Upadhyay S N, Dubey S K. Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective. Fuel, 2020, 273: 117783–117794.
    [15] Xie S Q, Li Z X, Li H D, et al. Integration of carbon capture with heterogeneous catalysis toward methanol production: Chemistry, challenges, and opportunities. Catal Rev: Sci Eng, 2023.
    [16] Ren M, Zhang Y, Wang X, Qiu H. Catalytic hydrogenation of CO2 to methanol: A review. Catalysts, 2022, 12(4): 403–435.
    [17] Li Z, Tang X, Jiang Y, et al. Atom-economical synthesis of gamma-valerolactone with self-supplied hydrogen from methanol. Chem Commun (Camb), 2015, 51(91): 16320–16323.
    [18] Tang X, Li Z, Zeng X, et al. In situ catalytic hydrogenation of biomass-derived methyl levulinate to gamma-valerolactone in methanol. ChemSusChem, 2015, 8(9): 1601–1607.
    [19] Cao X, Wei J, Liu H, et al. Hydrogenation of methyl levulinate to γ-valerolactone over Cu-Mg oxide using MeOH as in situ hydrogen source. J Chem Technol Biotechnol, 2019, 94(1): 167–177.
    [20] Cao X, Liu H, Wei J, et al. Effective production of γ-valerolactone from biomass-derived methyl levulinate over CuO-CaCO3 catalyst. Chin J Catal, 2019, 40(2): 192–203.
    [21] Douthwaite M, Zhang B, Iqbal S, et al. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catal Commun, 2022, 164: 106430–106434.
    [22] Wong C Y Y, Choi A W-T, Lui M Y, et al. Stability of gamma-valerolactone under neutral, acidic, and basic conditions. Struct Chem, 2016, 28(2): 423–429.
    [23] Kasar G B, Date N S, Bhosale P N, Rode C V. Steering the ester and γ-valerolactone selectivities in levulinic acid hydrogenation. Energy Fuels, 2018, 32(6): 6887–6900.
    [24] Mao Q L, Guo Y, Liu X H, et al. Identifying the realistic catalyst for aqueous phase reforming of methanol over Pt supported by lanthanum nickel perovskite catalyst. Appl Catal B: Environ, 2022, 313: 121435–121442.
    [25] Wang X, Li D, Gao Z, et al. The nature of interfacial catalysis over Pt/NiAl2O4 for hydrogen production from methanol reforming reaction. J Am Chem Soc, 2023, 145(2): 905–918.
    [26] Serra A, Artal R, Philippe L, et al. Electrodeposited Ni-rich Ni-Pt mesoporous nanowires for selective and efficient formic acid-assisted hydrogenation of levulinic acid to gamma-valerolactone. Langmuir, 2021, 37(15): 4666–4677.
    [27] Chen C-B, Chen M-Y, Zada B, et al. Effective conversion of biomass-derived ethyl levulinate into γ-valerolactone over commercial zeolite supported Pt catalysts. RSC Adv, 2016, 6(113): 112477–112485.
    [28] Zhang S, Yang X, Zheng K, et al. In-situ hydrogenation of furfural conversion to furfuryl alcohol via aqueous-phase reforming of methanol. Appl Catal A: Gen, 2019, 581: 103–110.
    [29] Lv Z, Zhu S, Wang S, et al. Aqueous-phase reforming of methanol to hydrogen over CoAl oxide-supported Pt catalyst. Appl Catal A: Gen, 2023, 665: 119378.
    [30] Li D D, Li Y, Liu X H, et al. NiAl2O4 spinel supported Pt catalyst: High performance and origin in aqueous-phase reforming of methanol. ACS Catal, 2019, 9(10): 9671–9682.
    [31] Ferreira Madeira F, Ben Tayeb K, Pinard L, et al. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Appl Catal A: Gen, 2012, 443-444: 171–180.
    [32] Kondeboina M, Enumula S S, Reddy K S, et al. Bimetallic Ni-Co/γ-Al2O3 catalyst for vapour phase production of γ-valerolactone: Deactivation studies and feedstock selection. Fuel, 2021, 285: 119094–119102.
    [33] Reynoso A J, Iriarte-Velasco U, Gutiérrez-Ortiz M A, Ayastuy J L. Highly stable Pt/CoAl2O4 catalysts in aqueous-phase reforming of glycerol. Catal Today, 2021, 367: 278–289.
    [34] Liu X, Guo Y, Xu W, et al. Catalytic properties of Pt/Al2O3 catalysts in the aqueous-phase reforming of ethylene glycol: Effect of the alumina support. Kinet Catal, 2011, 52(6): 817–822.
    [35] Chen X, Zhao T, Zhang X, et al. Synthesis of ternary magnetic nanoparticles for enhanced catalytic conversion of biomass-derived methyl levulinate into γ-valerolactone. J Energy Chem, 2021, 63: 430–441.
    [36] Liu Z, Gao X, Liu B, et al. Highly stable and selective layered Co-Al-O catalysts for low-temperature CO2 methanation. Appl Catal B: Environ, 2022, 310: 121303–121302.
    [37] Guo Y, Azmat M U, Liu X H, et al. Effect of support's basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR. Appl Energy, 2012, 92: 218–223.
    [38] Nabaho D, Niemantsverdriet J W, Claeys M, van Steen E. Hydrogen spillover in the Fischer-Tropsch synthesis: An analysis of platinum as a promoter for cobalt-alumina catalysts. Catal Today, 2016, 261: 17–27.
    [39] Shao Y, Ba S, Sun K, et al. Selective production of γ-valerolactone or 1, 4-pentanediol from levulinic acid/esters over Co-based catalyst: Importance of the synergy of hydrogenation sites and acidic sites. Chem Eng J, 2022, 429: 132433–132447.
    [40] Carlsson P, Osterlund L, Thormahlen P, et al. A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts. J Catal, 2004, 226(2): 422–434.
    [41] Pan Y, Xu L X, Huang L, et al. Identification of active sites in Pt-Co bimetallic catalysts for CO oxidation. ACS Appl Energy Mater, 2021, 4(10): 11151–11161.
    [42] Fan G L, Wang H, Xiang X, et al. Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property. J Solid State Chem, 2013, 197: 14–22.
    [43] Shao Z, Zhang S, Liu X, et al. Maximizing the synergistic effect between Pt0 and Ptδ+ in a confined Pt-based catalyst for durable hydrogen production. Appl Catal B: Environ, 2022, 316: 121669–121680.
    [44] Liu Y, Chen N, Wang F, et al. Pt–Co deposited on polyaniline-modified carbon for the electro-reduction of oxygen: The interaction between Pt–Co nanoparticles and polyaniline. New J Chem, 2017, 41(14): 6585–6592.
    [45] Zhang Z, Wang F, Jiang J, et al. LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel. Fuel, 2023, 333: 126341–126350.
    [46] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci, 2011, 257(7): 2717–2730.
    [47] He W, Huang L, Liu C, et al. Interfacial sites in platinum-hydroxide-cobalt hybrid nanostructures for promoting CO oxidation activity. Nanoscale, 2021, 13(4): 2593–2600.
    [48] Yan Z, Xu Z, Cheng B, Jiang C. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Appl Surf Sci, 2017, 404: 426–434.
    [49] Arsac F, Bianchi D, Chovelon J M, et al. Experimental microkinetic approach of the photocatalytic oxidation of isopropyl alcohol on TiO2. Part 1. Surface elementary steps involving gaseous and adsorbed C3HxO species. J Phys Chem A, 2006, 110(12): 4202–4212.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-03-17
  • 录用日期:  2024-03-25
  • 网络出版日期:  2024-05-22

目录

    /

    返回文章
    返回