留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RhnNin/TiO2(n = 1、2、3、4)催化剂中RhnNin合金团簇尺寸调控合成气制乙醇反应性能

张静静 凌丽霞 马彩萍 章日光 王宝俊

张静静, 凌丽霞, 马彩萍, 章日光, 王宝俊. RhnNin/TiO2(n = 1、2、3、4)催化剂中RhnNin合金团簇尺寸调控合成气制乙醇反应性能[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60454-8
引用本文: 张静静, 凌丽霞, 马彩萍, 章日光, 王宝俊. RhnNin/TiO2(n = 1、2、3、4)催化剂中RhnNin合金团簇尺寸调控合成气制乙醇反应性能[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60454-8
ZHANG Jingjing, LING Lixia, MA Caiping, ZHANG Riguang, WANG Baojun. Ethanol production from syngas over RhnNin/TiO2(n = 1, 2, 3, 4) catalysts: probing into the roles of RhnNin alloy clusters size in tuning catalytic performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60454-8
Citation: ZHANG Jingjing, LING Lixia, MA Caiping, ZHANG Riguang, WANG Baojun. Ethanol production from syngas over RhnNin/TiO2(n = 1, 2, 3, 4) catalysts: probing into the roles of RhnNin alloy clusters size in tuning catalytic performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60454-8

RhnNin/TiO2(n = 1、2、3、4)催化剂中RhnNin合金团簇尺寸调控合成气制乙醇反应性能

doi: 10.1016/S1872-5813(24)60454-8
基金项目: 国家重点研发计划(2021YFA1502804),国家自然科学基金(21736007)和山西浙大新材料与化工研究院研发项目(2022SX-FR001)资助
详细信息
    通讯作者:

    Tel:13834531385, E-mail: linglixia@tyut.edu.cn

  • 中图分类号: O643.32

Ethanol production from syngas over RhnNin/TiO2(n = 1, 2, 3, 4) catalysts: probing into the roles of RhnNin alloy clusters size in tuning catalytic performance

Funds: The project was supported by National Key R&D Program of China (2021YFA1502804), the Key Program of National Natural Science Foundation of China (21736007), and the supported by Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-FR001).
  • 摘要: 为明确RhnNin合金团簇尺寸诱导的金属-载体相互作用对合成气制乙醇反应性能的调控机制,本工作采用密度泛函理论(DFT)和微观动力学方法研究了不同Rh-Ni合金团簇尺寸RhnNin/TiO2(n = 1、2、3、4)上合成气制乙醇反应。结果表明,Rh1Ni1/TiO2和Rh3Ni3/TiO2能够显著促进CO活化转化及C−C链的形成,并抑制甲烷的生成。其中,Rh1Ni1/TiO2表现出最高的乙醇生成活性和相对选择性。电子性质分析表明,在Rh1Ni1/TiO2催化剂上,合金团簇上Ni原子及载体上Ti和O原子向Rh原子转移的电荷最多,合金团簇上Rh-Ni间相互作用最强,且合金团簇与TiO2载体间的相互作用最强,催化剂的催化活性最高。在525 K下,从头算分子动力学模拟(AIMD)模拟显示Rh1Ni1/TiO2催化剂具有较高的热稳定性。
  • 图  1  RhnNin/TiO2n = 1、2、3、4)模型最稳定结构的俯视图和侧视图

    Figure  1  Top and side views of the optimized structures of RhnNin/TiO2(n = 1, 2, 3, 4) models

    图  2  525 K下(1) Rh1Ni1/TiO2、(2) Rh2Ni2/TiO2、(3) Rh3Ni3/TiO2和(4) Rh4Ni4/TiO2催化剂上CO活化反应的势能图及始态、过渡态及终态结构

    Figure  2  Activation free energy diagrams and corresponding structures of the CO activation of (1) Rh1Ni1/TiO2, (2) Rh2Ni2/TiO2, (3) Rh3Ni3/TiO2 and (4) Rh4Ni4/TiO2 at 525 K

    图  3  525 K下RhnNin/TiO2n = 1、2、3、4)催化剂上CO活化、甲烷生成、C−C链形成及乙醇生成反应所需的活化自由能

    Figure  3  Activation free energy required for CO activation, methane formation, C−C chain and ethanol formation on RhnNin/TiO2(n = 1, 2, 3, 4) at 525 K

    图  4  525 下Rh1Ni1/TiO2及Rh3Ni3/TiO2催化剂上CH生成反应的势能及始态、过渡态及终态结构

    Figure  4  Activation free energy diagrams corresponding to CH production from syngas on the surfaces of Rh1Ni1/TiO2 and Rh3Ni3/TiO2 at 525 K and structure diagram of initial, transition and final states of reaction

    图  5  525 K下Rh1Ni1/TiO2及Rh3Ni3/TiO2催化剂上CH2生成反应的势能及始态、过渡态及终态结构

    Figure  5  Activation free energy diagram corresponding to CH2 production from syngas on the surfaces of Rh1Ni1/TiO2 and Rh3Ni3/TiO2 at 525 K and structure diagram of initial, transition and final states of reaction

    图  6  525 K下Rh1Ni1/TiO2及Rh3Ni3/TiO2催化剂上CH3生成反应的势能及始态、过渡态及终态结构

    Figure  6  Activation free energy diagram corresponding to CH3 production from syngas on the surfaces of Rh1Ni1/TiO2 and Rh3Ni3/TiO2 at 525 K and structure diagram of initial, transition and final states of reaction

    图  7  525 K下Rh1Ni1/TiO2及Rh3Ni3/TiO2催化剂上CH3OH生成反应的势能

    Figure  7  Activation free energy diagram corresponding to CH3OH production from syngas on the surfaces of Rh1Ni1/TiO2 and Rh3Ni3/TiO2 at 525 K

    图  8  525 K下Rh(111)、Rh1Ni1/TiO2和Rh3Ni3/TiO2催化剂上CHx和CH3OH生成反应的总能垒([a]指参考文献9

    Figure  8  Overall activation energy diagram of CHx and methanol formation on the surfaces of Rh(111), Rh1Ni1/TiO2 and Rh3Ni3/TiO2 at 525 K ([a] refers to reference 9)

    图  9  525 K下Rh1Ni1/TiO2上C−C链形成相关反应势能及始态、过渡态及终态结构

    Figure  9  Activation free energy diagram of C−C chain formation related reactions on the surface of Rh1Ni1/TiO2 at 525 K and structure diagram of initial, transition and final states of reaction

    图  10  525 K下Rh3Ni3/TiO2上C–C链形成相关反应的势能及始态、过渡态及终态结构

    Figure  10  Activation free energy diagram of C–C chain formation related reactions on the surface of Rh3Ni3/TiO2 at 525 K and structure diagram of initial, transition and final states of reaction

    图  11  525 K下Rh1Ni1/TiO2和Rh3Ni3/TiO2催化剂上CH3CH2OH生成反应的势能及始态、过渡态及终态结构

    Figure  11  Activation free energy diagram of ethanol formation from syngas on the surfaces of Rh1Ni1/TiO2 and Rh3Ni3/TiO2 at 525 K and structure diagram of initial, transition and final states of reaction

    图  12  RhnNin/TiO2n = 1、2、3、4)表面电荷差分密度

    Figure  12  Differential charge density of RhnNin/TiO2(n = 1, 2, 3, 4) surface

    图  13  Rh1Ni1/TiO2催化剂AIMD模拟总能量和温度随时间的变化及催化剂最终稳定构型的俯视图和侧视图

    Figure  13  Variation of the total energy and temperature against time for the AIMD simulation of Rh1Ni1/TiO2. The insets are the top and side views of the snapshot of the final configuration

    表  1  RhnNinn = 1、2、3、4)合金团簇同分异构体构型及结合能

    Table  1  Configuration and binding energy of isomers of RhnNin(n = 1, 2, 3, 4) alloy clusters

    ClusterStructureEB/(kJ·mol−1ClusterStructureEB/(kJ·mol−1
    Rh1Ni1157.4Rh4Ni4-1328.5
    Rh2Ni2251.2Rh4Ni4-2329.4
    Rh3Ni3-1301.7Rh4Ni4-3328.0
    Rh3Ni3-2300.2Rh4Ni4-4326.9
    Rh4Ni4-5327.1
    下载: 导出CSV

    表  2  TiO2载体与RhnNinn = 1、2、3、4)团簇之间的结合能Eb(n)和平均原子结合能$\overline E_{\mathrm{b}} $(n

    Table  2  Binding energy Eb(n) between TiO2 support and RhnNin(n = 1, 2, 3, 4) cluster and average atomic binding energy $\overline E_{\mathrm{b}} $ (n)

    CatalystE/(kJ·mol−1)
    Eb(n)$\overline E_{\mathrm{b}} $(n)
    Rh1Ni1/TiO2−368.7−184.3
    Rh2Ni2/TiO2−531.1−132.8
    Rh3Ni3/TiO2−346.5−57.7
    Rh4Ni4/TiO2−449.9−56.2
    下载: 导出CSV

    表  3  由CO活化生成CHO过程中(1) Rh1Ni1/TiO2、(2) Rh2Ni2/TiO2、(3) Rh3Ni3/TiO2和(4) Rh4Ni4/TiO2催化剂上C−H键形成的活化能(Ea)及从反应物到过渡态上的C−H键缩短量(ΔDC−H

    Table  3  The activation energy (Ea) for C−H bond formation on (1) Rh1Ni1/TiO2、(2) Rh2Ni2/TiO2、(3) Rh3Ni3/TiO2 and (4) Rh4Ni4/TiO2 catalysts during CHO formation from CO activation and the C−H bond shortening (ΔDC−H) from reactant to transition state

    Catalyst Rh1Ni1/TiO2 Rh2Ni2/TiO2 Rh3Ni3/TiO2 Rh4Ni4/TiO2
    Ea/(kJ·mol−1) 80.0 101.0 65.3 88.2
    DC−H 1.386 1.886 1.082 1.627
    下载: 导出CSV

    表  4  525K下Rh1Ni1/TiO2和Rh3Ni3/TiO2催化剂表面上乙醇生成中所涉及基元反应的活化自由能(Ga kJ/mol)、反应自由热(ΔG kJ/mol)及基元反应对应的唯一虚频

    Table  4  Activation free energies (Ga kJ/mol), reaction free energies (ΔG kJ/mol) and the unique imaginary frequency of the elementary reactions involved in the formation of C2H5OH over Rh1Ni1/TiO2 and Rh3Ni3/TiO2 catalysts at 525 K

    Elementary stepRh1Ni1/TiO2Rh3Ni3/TiO2
    GaΔGf/iGaΔGf/i
    R-1CO→C+O267.7142.595.9i300.0147.5299.8i
    R-2CO+H→COH118.826.71502.2i139.261.91468.2i
    R-3CO+H→CHO80.055.0243.6i65.361.7214.8i
    R-4CHO+H→CHOH62.58.0500.3i114.149.0861.6i
    R-5CHOH→CH+OH26.0−50.9186.9i30.9−88.1312.9i
    R-6CHO+H→CH+OH16.0−69.3329.5i133.8−39.1299.0i
    R-7CHO→CH+O21.3−58.7370.8i215.6124.7181.4i
    R-8CHO+H→CH2O54.87.3735.7i116.289.8750.2i
    R-9CH2O→CH2+O87.6−48.4191.2i90.3−29.7166.8i
    R-10CH2O+H→CH2+OH192.551.9127.0i157.128.8391.7i
    R-11CH2O+H→CH2OH75.5−18.5952.9i129.493.91041.8i
    R-12CHOH+H→CH2OH18.7−24.9383.3i12.9−18.4669.0i
    R-13CH2OH→CH2+OH78.717.2254.2i103.9−5.3157.2i
    R-14CH2O+H→CH3O107.5−17.2668.0i107.639.1625.4i
    R-15CH3O→CH3+O79.0−135.7552.3i140.2−29.2125.0i
    R-16CH3O+H→CH3+OH162.247.0971.0i160.9−144.9570.4i
    R-17CH3O+H→CH3OH129.189.1901.1i68.37.31038.9i
    R-18CH2OH+H→CH3OH128.388.0368.1i77.137.3710.4i
    R-19CH+H→CH2107.319.1617.7i38.026.7496.3i
    R-20CH2+H→CH370.714.5692.0i62.932.3722.7i
    R-21CH3+H→CH4149.771.01189.9i37.90.0781.4i
    R-22CH+CH→C2H241.0−65.9343.9i113.081.964.5i
    R-23CH+CO→CHCO16.3−18.0119.0i213.5127.5405.5i
    R-24CH+CHO→CHCHO7.5−53.8175.6i50.1−122.5219.2i
    R-25CHO+CHO→C2H2O233.8−91.4329.3i88.252.8477.9i
    R-26C2H2O2→CHCHO+O141.6−78.793.1i219.218.2421.9i
    R-27CHCO+H→CH2CO51.319.7672.7i63.5−40.9830.6i
    R-28CHCO+H→CHCHO77.915.7168.8i129.6−22.7214.2i
    R-29CHCO+H→CHCOH154.066.11382.0i132.3−14.8566.4i
    R-30CH2+CH2→C2H489.8−67.770.9 i
    R-31CH2+CO→CH2CO84.311.0302.7i
    R-32CH2+CHO→CH2CHO148.023.1168.9i
    R-33CH3+CH3→C2H6209.675.3542.8i
    R-34CH3+CO→CH3CO87.050.1497.2i
    R-35CH3+CHO→CH3CHO65.19.3138.3i
    R-36CHCHO+H→CH2CHO23.82.7417.2i30.6−1.4647.5i
    R-37CHCHO+H→CHCHOH257.948.0895.6i86.929.91107.7i
    R-38CH2CHO+H→CH3CHO63.033.5337.4i18.8−15.2269.3i
    R-39CH2CO+H→CH2CHO75.421.2311.6i
    R-40CH2CO+H→CH2COH143.957.8971.5i
    R-41CH2CHO+H→CH2CHOH107.73.0786.4i104.860.91069.5i
    R-42CH3CHO+H→CH3CH2O50.6−17.7395.1i54.9−25.9489.0i
    R-43CH3CHO+H→CH3CHOH164.3108.5516.3i132.0106.31089.7i
    R-44CH3CH2O+H→C2H5OH95.076.7424.2i44.4−17.01147.5i
    下载: 导出CSV

    表  5  525 K下Rh1Ni1/TiO2和Rh3Ni3/TiO2催化剂上乙醇生成有利路径中涉及中间体覆盖度及产物形成速率

    Table  5  Intermediate coverage and product formation rates involved in favorable pathways for the formation of ethanol on Rh1Ni1/TiO2 and Rh3Ni3/TiO2 catalysts at 525 K

    Parameter Rh1Ni1/TiO2 Rh3Ni3/TiO2
    Coverage θCO 5.44×10−2 1.39×10−5
    θH 2.23×10−5 1.29×10−8
    θCHO 1.19×10−8 1.00
    θCH 3.15×10−6 1.53×10−21
    θCHOH 5.18×10−13 8.46×10−11
    $\theta_{{\mathrm{CH_2 OH}}} $ 4.24×10−2 2.09×10−4
    θCHCHO 6.94×10−8 1.38×10−15
    $\theta_{{\mathrm{CH_2CHO}}} $ 5.54×10−4 9.27×10−17
    $\theta_{{\mathrm{CH_3CHO}}} $ 3.27×10−5 3.63×10−13
    $\theta_{{\mathrm{CH_3CH_2O}}} $ 8.51×10−1 3.26×10−14
    $\theta_{{\mathrm{CH_2}}} $ 7.21×10−10 4.55×10−19
    $\theta_{{\mathrm{CH_3}}} $ 5.13×10−2 1.48×10−21
    θ* 4.73×10−10 2.22×10−13
    Formation rate/s−1 $r_{{\mathrm{CH_3OH}}} $ 1.76×10−6 6.21×10−7
    $r_{{\mathrm{CH_4}}} $ 1.62×10−8 3.53×10−20
    $r_{{\mathrm{C_2H_2}}} $ 9.11×10−3 1.47×10−40
    $r_{{\mathrm{C_2H_5OH}}} $ 7.35×10−2 1.75×10−13
    Relative selectivity/% $s_{{\mathrm{CH_3OH}}} $ 0.00% 100.00%
    $s_{{\mathrm{CH_4}}} $ 0.00% 0.00%
    $s_{{\mathrm{C_2H_2}}} $ 11.03% 0.00%
    $s_{{\mathrm{C_2H_5OH}}} $ 88.97% 0.00%
    下载: 导出CSV

    表  6  RhnNin/TiO2n = 1、2、3、4)上Ni、Ti及O原子平均失去电荷量及Rh原子平均得到电荷量

    Table  6  The amount of average charge loss of Ni, Ti and O atoms and average amount in charge gain of Rh atoms over RhnNin/TiO2(n = 1, 2, 3, 4)

    Catalyst △qRh/e △qNi/e △qTi/e △qO/e
    Rh1Ni1/TiO2 0.627 −0.389 −2.268 −0.801
    Rh2Ni2/TiO2 0.198 −0.232 −2.188 −0.805
    Rh3Ni3/TiO2 0.064 −0.132 −2.169 −0.805
    Rh4Ni4/TiO2 0.088 −0.039 −2.224 −0.795
    下载: 导出CSV
  • [1] 王占慧, 凌丽霞, 王俊刚, 等. 合成气制乙醇RhCu双金属催化剂活性位点的作用机制研究[J]. 燃料化学学报(中英文),2021,49(3):358−365.

    WANG Z H, LING L X, WANG J G, et al. Role of study on the effect of active sites of ethanol synthesis from syngas over RhCu bimetallic catalyst[J]. J Fuel Chem Technol,2021,49(3):358−365.
    [2] 陈维苗, 丁云杰, 薛飞, 等. CO加氢制C2含氧化合物 Rh基催化剂中常见助剂的作用[J]. 物理化学学报,2015,31(1):1−10. doi: 10.3866/PKU.WHXB201411054

    CHEN W M, DING Y J, XUE F, et al. Role of common promoters in Rh-based catalysts for CO hydrogenation to C2-oxygenates[J]. Acta Phys-Chim Sin,2015,31(1):1−10. doi: 10.3866/PKU.WHXB201411054
    [3] BURCH R, PETCH M I. Investigation of the synthesis of oxygenates from carbon monoxide/hydrogen mixtures on supported rhodium catalysts[J]. Appl Catal A: Gen,1992,88(1):39−60. doi: 10.1016/0926-860X(92)80195-I
    [4] YIN H M, DING Y J, LUO H Y, et al. Influence of iron promoter on catalytic properties of Rh-Mn-Li/SiO2 for CO hydrogenation[J]. Appl Catal A: Gen,2003,243(1):155−164. doi: 10.1016/S0926-860X(02)00560-4
    [5] UNDERWOOD R P, BELL A T. Lanthana-promoted Rh/SiO2: ІІ. Studies of CO hydrogenation[J]. J Catal,1988,111(2):325−335. doi: 10.1016/0021-9517(88)90091-7
    [6] WILSON T P, KASAI P H, ELLGEN P C. The state of manganese promoter in rhodium-silica gel catalysts[J]. J Catal,1981,69(1):193−201. doi: 10.1016/0021-9517(81)90141-X
    [7] KATZER J R, SLEIGHT A W, GAJARDO P, et al. The role of the support in CO hydrogenation selectivity of supported rhodium[J]. Faraday Discuss Chem Soc,1981,72:121−133. doi: 10.1039/dc9817200121
    [8] 陈维苗, 丁云杰, 薛飞, 等. 合成气制C2含氧化合物Rh基催化剂中的载体效应[J]. 化工进展,2014,33(7):1753−1762. doi: 10.3969/j.issn.1000-6613.2014.07.017

    CHEN W M, DING Y J, XUE F, et al. Support effect of Rh-based catalyst for CO hydrogenation to C2-oxygenates[J]. Chem Ind Eng Prog,2014,33(7):1753−1762. doi: 10.3969/j.issn.1000-6613.2014.07.017
    [9] KANG L, ZHANG Y, MA L X, et al. The roles of Rh crystal phase and facet in syngas conversion to ethanol[J]. Chem Eng Sci,2022,248:117186. doi: 10.1016/j.ces.2021.117186
    [10] ZHANG R G, PENG M, WANG B J. Catalytic selectivity of Rh/TiO2 catalyst in syngas conversion to ethanol: probing into the mechanism and functions of TiO2 support and promoter[J]. Catal Sci Technol,2017,7:1073−1085. doi: 10.1039/C6CY02350A
    [11] HAIDER M A, GOGATE M R, DAVIS R J. Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol[J]. J Catal,2009,261(1):9−16. doi: 10.1016/j.jcat.2008.10.013
    [12] ZHONG H X, WANG J M, GUO S X, et al. Mutual tailored bimetallic Rh–Co supported on La modified SiO2 for direct ethanol synthesis from syngas[J]. Ind Eng Chem Res,2019,58(8):2631−2643. doi: 10.1021/acs.iecr.8b05474
    [13] OJEDA M, GRANADOS M L, ROJAS S, et al. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas effect of manganese loading[J]. Appl Catal A: Gen,2004,261(1):47−55. doi: 10.1016/j.apcata.2003.10.033
    [14] KRISHNAMURTHY R, CHUANG S S C, GHOSAL K. Carbon monoxide adsorption and hydrogenation on Cu-Rh/SiO2 catalysts[J]. Appl Catal A-Gen,1994,114(1):109−125. doi: 10.1016/0926-860X(94)85111-5
    [15] LI F, MA H F, ZHANG H T, et al. Ethanol synthesis from syngas on Mn- and Fe-promoted Rh/g-Al2O3[J]. C R Chimie,2014,17:1109−1115. doi: 10.1016/j.crci.2014.01.015
    [16] LUK H T, MONDELLI C, FERRE D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev,2017,46:1358−1426. doi: 10.1039/C6CS00324A
    [17] HU J, WANG Y, CAO C, et al. Conversion of biomass-derived syngas to alcohols and C2 oxygenates using supported Rh catalysts in a microchannel reactor[J]. Catal Today,2007,120:90−95. doi: 10.1016/j.cattod.2006.07.006
    [18] YU J, MAO D, HAN L, et al. CO hydrogenation over Fe-promoted Rh–Mn–Li/SiO2 catalyst: The effect of sequences for introducing the Fe promoter[J]. Fuel Process Technol,2013,112:100−105. doi: 10.1016/j.fuproc.2013.03.004
    [19] YU J, MAO D, HAN L, et al. The effect of Fe on the catalytic performance of Rh–Mn–Li/SiO2 catalyst: A DRIFTS study[J]. Catal Commun,2012,27:1−4. doi: 10.1016/j.catcom.2012.06.010
    [20] XIANG M L, LI D B, LI W H, et al. Potassium and nickel doped β-Mo2C catalysts for mixed alcohols synthesis via syngas[J]. Catal Commun,2007,8(3):513−518. doi: 10.1016/j.catcom.2006.07.028
    [21] ZHAO L H, FANG K G, JIANG D, et al. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation[J]. Catal Today,2010,158(3):490−495.
    [22] FANG K G, LI D B, LIN M G, et al. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today,2009,147(2):133−138. doi: 10.1016/j.cattod.2009.01.038
    [23] MOZAMMEL T, DUMBRE D, HUBESCH R, et al. Carbon dioxide reforming of methane over mesoporous alumina supported Ni(Co), Ni(Rh) bimetallic, and Ni(CoRh) trimetallic catalysts: Role of nanoalloying in improving the stability and nature of coking[J]. Energy Fuels,2020,34(12):16433−16444. doi: 10.1021/acs.energyfuels.0c03249
    [24] BIZKARRA K, BERMUDEZ J M, ARCELUS-ARRILLAGA P, et al. Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming[J]. Int J Hydrogen Energ,2018,43(26):11706−11718. doi: 10.1016/j.ijhydene.2018.03.049
    [25] GUO F, RAN J Y, NIU J T, et al. Comparative density functional theory study of carbon formation and removal mechanism on Rh modified Ni-based catalyst in the CH4/CO2 reforming[J]. Int J Energy Res,2021,45(7):10100−10111. doi: 10.1002/er.6501
    [26] MAO Y R, ZHANG L Z, ZHENG X J, et al. Coke-resistance over Rh–Ni bimetallic catalyst for low temperature dry reforming of methane[J]. Int J Hydrogen Energ,2023,48(37):13890−13901. doi: 10.1016/j.ijhydene.2022.12.299
    [27] TANG L, HUANG X, RAN J Y, et al. Density functional theory studies on direct and oxygen assisted activation of C–H bond for dry reforming of methane over Rh–Ni catalyst[J]. Int J Hydrogen Energ,2022,47(91):30391−30403.
    [28] NING X, WANG H M, ZHOU G H, et al. Selective catalytic hydrodechlorination of 1, 2-Dichloroethane to ethylene over Ni−Rh nanoparticle catalysts supported on γ−Al2O3[J]. ACS Appl Nano Mater,2023,6:390−397. doi: 10.1021/acsanm.2c04520
    [29] GHOSH T, LIU X W, SUN W M, et al. Revealing the origin of low-temperature activity of Ni–Rh nanostructures during CO oxidation reaction with operando TEM[J]. Adv Sci,2022,9:2105599. doi: 10.1002/advs.202105599
    [30] XUE Q Q, YI H L, LI Z W, et al. Experimental and DFT studies on diesel-steam-reforming to hydrogen over a bimetallic Rh-Ni-based MgO-Al2O3 microsphere catalyst[J]. Fuel,2022,318:123632. doi: 10.1016/j.fuel.2022.123632
    [31] JEFFREY C S, WU H C. Bimetallic Rh–Ni/BN catalyst for methane reforming with CO2[J]. Chem Eng J,2009,148(2-3):539−545. doi: 10.1016/j.cej.2009.01.011
    [32] ARANDIYAN H, WANG Y, SCOTT J, et al. In situ exsolution of bimetallic Rh–Ni nanoalloys: a highly efficient catalyst for CO2 methanation[J]. ACS Appl Mater Interfaces,2018,10(19):16352−16357. doi: 10.1021/acsami.8b00889
    [33] JUNG Y G, LEE D H, KIM Y M, et al. Rh-Ni and Rh-Co Catalysts for autothermal reforming of gasoline[J]. Bull Korean Chem Soc,2014,35(1):231−235. doi: 10.5012/bkcs.2014.35.1.231
    [34] LIU H L, ZHOU C H, Li W Q, et al. Rh bimetallic catalysts with high catalytic activity for the hydrogenation of N-Ethylcarbazole[J]. ACS Sustainable Chem Eng,2021,9(15):5260−5267. doi: 10.1021/acssuschemeng.0c08270
    [35] VALERO M C, RAYNAUD P, SSUTET P. Interplay between molecular adsorption and metal-support interaction for small supported metal clusters: CO and C2H4 adsorption on Pd4/γ-Al2O3[J]. J Catal,2007,247(2):339−355. doi: 10.1016/j.jcat.2007.02.014
    [36] SHETTY S, VAN SANTENA R A, STEVENS P A, et al. Molecular steps for the syngas conversion on the Rh6 cluster[J]. J Mol Catal A-Chem,2010,330(1):73−87.
    [37] ZHANG R G, PENG M, DUAN T, et al. Insight into size dependence of C2 oxygenate synthesis from syngas on Cu cluster: The effect of cluster size on the selectivity[J]. Appl Surf Sci,2017,407(15):282−296.
    [38] DONG C Y, LI Y L, CHENG D Y, et al. Supported metal clusters: fabrication and application in heterogeneous catalysis[J]. ACS Catal,2020,10(15):11011−11045.
    [39] ZHANG R G, DUAN T, WANG B J, et al. Unraveling the role of support surface hydroxyls and its effect on the selectivity of C2 species over Rh/γ-Al2O3 catalyst in syngas conversion: A theoretical study[J]. Appl Surf Sci,2016,379(30):384−394.
    [40] LING L X, CAO Y T, HAN M, et al. Catalytic performance of Pd n (n = 1, 2, 3, 4 and 6) clusters supported on TiO2-V for the formation of dimethyl oxalate via the CO catalytic coupling reaction: A theoretical study[J]. Phys Chem Chem Phys,2020,22(8):4549−4560. doi: 10.1039/C9CP06773F
    [41] SHAO X X, GUO X Y, SHI X F, et al. C2H2 semi-hydrogenation over the TiO2 supported Pd n and Pd nCO cluster catalysts: Influences of cluster size and CO on the catalytic performance[J]. Fuel,2024,358:130053. doi: 10.1016/j.fuel.2023.130053
    [42] SONDON T, GUEVARA J. Magnetic properties of Ni–Rh clusters: Behavior in the Ni-rich region[J]. Physica B,2004,354(4):303−306.
    [43] SPIVEY J J, EGBEBI A, Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas[J]. Chem Soc Rev, 2007, 36, 1514–1528.
    [44] WANG J J, ZHANG Q H, WANG Y, et al. Rh-catalyzed syngas conversion to ethanol: Studies on the promoting effect of FeOx[J], Catal Today, 2011, 171, 257–265.
    [45] MA J L, YIN L F, LING L X, et al. The formation of high energy density fuel via the hydrogenation of naphthalene over Ni catalyst: The combined DFT and microkinetic analysis[J]. Fuel,2023,333:126307. doi: 10.1016/j.fuel.2022.126307
    [46] WU Y Y, GUO X Y, SHI X F, et al. C2H2 Semi-hydrogenation over S-modified PdM IMCs: Tuning catalytic performance by surface S Atom, and metal M type and ratio[J]. Appl Surf Sci,2023,637:157906. doi: 10.1016/j.apsusc.2023.157906
    [47] WANG V, XU N, LIU J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Comput Phys Commun,2021,267:108033−108051. doi: 10.1016/j.cpc.2021.108033
    [48] MARTYNA G J, KLEIN M L, TUCKEMAN M. Nose–Hoover chains: the canonical ensemble via continuous dynamics[J]. J Chem Phys,1992,97(4):2635−2643. doi: 10.1063/1.463940
    [49] 董超, 段海明. Rh nCr(n = 1-7)团簇结构和电子性质的密度泛函理论研究[J]. 新疆大学学报(自然科学版),2011,28(1):65−70.

    DONG C, DUAN H M. Structural and electronic properties of Rh nCr(n = 1-7) clusters studied by density–functional theory[J]. Xinjiang Univ, Nat Sci Ed Chin Engl,2011,28(1):65−70.
    [50] SUN C, SMITH S C. Strong interaction between gold and anatase TiO2(001) predicted by first principle studies[J]. J Phys Chem C,2012,116(5):3524−3531. doi: 10.1021/jp208948x
    [51] ZHANG Y S, LIU J X, QIAN K, et al. Structure sensitivity of Au-TiO2 strong metal–support interactions[J]. Angew Chem Int Ed,2021,133:12181−12188. doi: 10.1002/ange.202101928
    [52] SAQIAIN M A, HUSSAIN A, SIDDIQ M, et al. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: a DFT + U study[J]. Phys Chem Chem Phys,2015,17(38):25403−25410. doi: 10.1039/C5CP04113A
    [53] FINAZZI E, VALENTIN C D, PACCHIONI G, et al. Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA + UGGA + U, and hybrid DFT calculations[J]. J Chem Phys,2008,129:154113. doi: 10.1063/1.2996362
    [54] MORGAN B J, WATSON G W. A DFT + U description of oxygen vacancies at the TiO2 rutile (110) surface[J]. Surf Sci,2007,601:5034−5041. doi: 10.1016/j.susc.2007.08.025
    [55] HUYGH S and NEYTS E C. Adsorption of C and CH x radicals on anatase (001) and the influence of oxygen vacancies[J]. J Phys Chem C,2015,119(9):4908−4921. doi: 10.1021/jp5127249
    [56] LINH N H, NGUYEN T Q, DINO W A, et al. Effect of oxygen vacancy on the adsorption of O2 on anatase TiO2(001): A DFT-based study[J]. Surf Sci,2015,633:38−45. doi: 10.1016/j.susc.2014.11.015
    [57] CHENG H Z and SELLONI A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile[J]. Phys Rev B, 009, 79: 092101.
    [58] WANG B J, GUO W S, ZHANG R G, et al. C2 Oxygenates formation from syngas over the Cu-rich and Rh-rich surfaces of Rh-Cu bimetallic catalysts: probing into the effects of the surface structure and composition on the catalytic performance[J]. J Phys Chem C,2019,123:19528−19539. doi: 10.1021/acs.jpcc.9b03731
    [59] CHOI Y M, LIU P. Mechanism of ethanol synthesis from syngas on Rh(111)[J]. J Am Chem Soc,2009,131:13054−13061. doi: 10.1021/ja903013x
    [60] ZHANG Y R, SU X, LI L, et al. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer–Tropsch synthesis[J]. ACS Catal,2020,10(21):12967−12975. doi: 10.1021/acscatal.0c02780
    [61] MENG H, YANG Y S, SHEN T Y, et al. A strong bimetal-support interaction in ethanol steam reforming[J]. Nat Commun,2023,14:3189. doi: 10.1038/s41467-023-38883-x
    [62] 侯志全, 郭萌, 刘雨溪, 等. 金属间化合物的合成及其催化应用[J]. 材料研究学报,2020,34(2):1−10. doi: 10.11901/1005.3093.2019.334

    HOU Z Q, GUO M, LIU Y X, et al. Synthesis of intermetallic compounds and theircatalytic applications[J]. Chin J Mater Res,2020,34(2):1−10. doi: 10.11901/1005.3093.2019.334
    [63] HAIDER M A, GOGATE M R, DAVIS R J. Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol[J]. J Catal,2009,261(1):9−16. doi: 10.1016/j.jcat.2008.10.013
    [64] CHEN W M, DING Y J, SONG X G, et al. Promotion effect of support calcination on ethanol production from CO[J]. Appl Catal A-Gen,2011,407(1-2):231−237. doi: 10.1016/j.apcata.2011.08.044
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  30
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-04-17
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-21

目录

    /

    返回文章
    返回