留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg修饰锌孔雀石催化甲醇合成的性能研究

袁治国 张凡 杨世礼 徐晓颖 刘晨阳 邱正璞 魏伟

袁治国, 张凡, 杨世礼, 徐晓颖, 刘晨阳, 邱正璞, 魏伟. Mg修饰锌孔雀石催化甲醇合成的性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60455-X
引用本文: 袁治国, 张凡, 杨世礼, 徐晓颖, 刘晨阳, 邱正璞, 魏伟. Mg修饰锌孔雀石催化甲醇合成的性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60455-X
YUAN Zhiguo, ZHANG Fan, YANG Shili, XU Xiaoying, LIU Chenyang, QIU Zhengpu, WEI Wei. Effect of Mg modification on the catalytic performance of zinc malachite for methanol synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60455-X
Citation: YUAN Zhiguo, ZHANG Fan, YANG Shili, XU Xiaoying, LIU Chenyang, QIU Zhengpu, WEI Wei. Effect of Mg modification on the catalytic performance of zinc malachite for methanol synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60455-X

Mg修饰锌孔雀石催化甲醇合成的性能研究

doi: 10.1016/S1872-5813(24)60455-X
基金项目: 国家能源集团科技创新项目(ST930023003N)资助
详细信息
    通讯作者:

    Tel: 010-57337302, E-mail: xiaoying.xu.d@chnenergy.com.cn

  • 中图分类号: O643

Effect of Mg modification on the catalytic performance of zinc malachite for methanol synthesis

Funds: The project was supported by Science and Technology Innovation Project of CHN ENERGY Group (ST930023003N).
  • 摘要: 焦炉煤气制甲醇的复杂工况给铜基甲醇合成催化剂的稳定性和寿命带来挑战。本工作制备了一系列不同镁含量的锌孔雀石样品,采用原位X射线衍射、热重-质谱、N2物理吸附、H2程序升温还原、CO2程序升温脱附等方法对锌孔雀石及焙烧后的样品进行表征,考察镁元素的添加对锌孔雀石结构和甲醇合成催化性能的影响。结果发现,镁元素的添加提高了锌孔雀石结构内部的铜取代程度,促进了焙烧后催化剂内部高温碳酸盐的形成。随着镁含量的增加,焙烧后催化剂的比表面积逐渐增大,还原后的单质铜晶粒尺寸逐渐减小。原位XRD结果表明,少量镁元素在催化剂热处理过程中能有效抑制单质铜晶粒尺寸生长。评价显示催化剂的初始活性随着镁元素的添加呈现先升高后降低的趋势,热处理后含镁催化剂活性仍保持在相对较高的水平。镁元素的适量添加有助于提高铜基甲醇合成催化剂初始活性和热稳定性。
  • 图  1  不同镁含量的前驱体样品的XRD谱图

    Figure  1  XRD results of precursor samples with different Mg contents

    图  2  催化剂前驱体的热重质谱联用分析

    Figure  2  Thermogravimetric mass spectrometry results of catalyst precursors (10 ℃/min, air atmosphere)

    图  3  焙烧后(a)和230 ℃还原后(b)催化剂样品的XRD谱图

    Figure  3  XRD results of catalyst samples after calcination (a) and reduction at 230 ℃ (b)

    图  4  CuZn和CuZnMg0.25样品的原位XRD谱图

    Figure  4  In-situ XRD results of CuZn and CuZnMg0.25 samples

    图  5  CuZn和CuZnMg0.25样品热处理过程中的Cu晶粒尺寸变化

    Figure  5  Variation of Cu grain sizes of CuZn and CuZnMg0.25 samples during heat treatment

    图  6  不同镁含量催化剂样品的H2-TPR谱图

    Figure  6  H2-TPR results of catalyst samples with different Mg contents

    图  7  不同镁含量催化剂样品的CO2-TPD谱图

    Figure  7  CO2-TPD results of catalyst samples with different Mg contents

    图  8  催化剂样品的初始活性和热稳定性

    Figure  8  Evaluation results of initial activity and thermal stability of catalyst samples

    表  1  甲醇合成催化剂样品的设计元素组成

    Table  1  Designed atomic ratio of the methanol synthesis catalyst samples

    Sample Cu2+∶Zn2+∶Mg2+
    (mole ratio)
    CuO∶ZnO∶MgO
    (mass ratio)
    CuZn 7∶ 3∶ 0 69.5∶30.5∶0
    CuZnMg0.25 7∶ 3∶ 0.25 68.7∶30.1∶1.2
    CuZnMg0.50 7∶ 3∶ 0.50 67.8∶29.7∶2.5
    下载: 导出CSV

    表  2  不同镁含量样品的物化性质表征

    Table  2  Physicochemical characterization results of samples with different Mg contents

    Sample Grain sizea/nm Specific surface area /(m2·g−1) Elemental compositionc w/%
    precursor CuO Cu b CuO ZnO MgO CO2
    CuZn 24.78 9.45 13.2 38.6 68.6 26.9 0.0 4.5
    CuZnMg0.25 18.06 7.85 10.5 46.1 66.6 27.2 0.4 5.8
    CuZnMg0.50 13.91 6.93 7.81 65.7 65.4 26.5 1.0 7.1
    a: Precursors calculated by the $12\bar0 $> reflection, CuO and Cu calculated by the $11\bar1 $ reflection; b: In-situ XRD results at 230 ℃; c: Normalized results of XRF analyses.
    下载: 导出CSV

    表  3  不同镁含量样品的CO2-TPD曲线分峰拟合

    Table  3  Peak fitting results of CO2-TPD curves of samples with different Mg contents

    Sample Amount of total basic sites
    /(µmol·g−1)
    α peak β peak γ peak
    t/℃ basic sites /
    (µmol·g−1)
    t/℃ basic sites /
    (µmol·g−1)
    t/℃ basic sites /
    (µmol·g−1)
    CuZn 245 93 34 (13.8%) 143 57 (23.1%) 385 155 (63.1%)
    CuZnMg0.25 336 93 52 (15.4%) 150 107 (31.9%) 389 177 (52.7%)
    CuZnMg0.50 409 95 54 (13.1%) 157 153 (37.4%) 391 203 (49.5%)
    下载: 导出CSV
  • [1] XU X, LIU Y, ZHANG F, et al. Clean coal technologies in China based on methanol platform[J]. Catal Today,2017,298:61−68. doi: 10.1016/j.cattod.2017.05.070
    [2] 顾宗勤. 砥砺前行, 稳中求进, 扎实推进甲醇行业绿色低碳高质量发展[R]. 南京: 中国氮肥工业协会, 2023.

    GU Zongqin. Forge ahead, seek progress in stability, and steadily promote the green, low-carbon and high-quality development of methanol industry[R]. Nanjing: China Nitrogen Fertilizer Industry Association, 2023.)
    [3] 2022年我国甲醇产能、产量以及进口情况[J]. 煤化工, 2023, 51 (2): 126.

    Production capacity, output and import of methanol in China in 2022[J]. Coal Chem Ind, 2023, 51 (2): 126.)
    [4] BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science,2012,336:893−897. doi: 10.1126/science.1219831
    [5] BEHRENS M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. J Catal,2009,267:24−29. doi: 10.1016/j.jcat.2009.07.009
    [6] FICHTL M, SCHLERETH D, JACOBSEN N, et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Appl Catal A: Gen,2015,502:262−270. doi: 10.1016/j.apcata.2015.06.014
    [7] LUNKENBEIN T, GIRGSDIES F, KANDEMIR T, et al. Bridging the time gap: A copper/zinc oxide/aluminum oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales[J]. Angew Chem-Int Ed,2016,55:12708−12712. doi: 10.1002/anie.201603368
    [8] ZHANG F, XU X, QIU Z, et al. Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure[J]. Green Energy Environ,2022,7:772−781. doi: 10.1016/j.gee.2020.11.027
    [9] BEHRENS M. Coprecipitation: An excellent tool for the synthesis of supported metal catalysts-From the understanding of the well known recipes to new materials[J]. Catal Today,2015,246:46−54. doi: 10.1016/j.cattod.2014.07.050
    [10] 杨浩, 郑华艳, 常瑜, 等. 以共沉淀法为基础的铜基催化剂制备新技术的研究进展[J]. 化工进展,2014,33(2):379−385. doi: 10.3969/j.issn.1000-6613.2014.02.020

    YANG Hao, ZHENG Huayan, CHANG Yu, et al. Research progress of preparation of copper-based catalyst by coprecipitation[J]. Chem Ind Eng Prog,2014,33(2):379−385. doi: 10.3969/j.issn.1000-6613.2014.02.020
    [11] ZWIENER L, GIRGSDIES F, BRENNECKE D, et al. Evolution of zincian malachite synthesis by low temperature co-precipitation and its catalytic impact on the methanol synthesis[J]. Appl Catal B: Environ,2019,249:218−226. doi: 10.1016/j.apcatb.2019.02.023
    [12] BEHRENS M, GIRGSDIES F, TRUNSCHKE A, et al. Minerals as model compounds for Cu/Zno catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture[J]. Eur J Inorg Chem,2009,10:1347−1357.
    [13] ZHENG H, NARKHEDE N, ZHANG H, et al. Oriented isomorphous substitution: An efficient and alternative route to fabricate the Zn rich phase pure (Cu1− x, Zn x)2(OH)2CO3 precursor catalyst for methanol synthesis[J]. ChemCatChem,2020,12:2040−2049. doi: 10.1002/cctc.201902286
    [14] ZANDER S, KUNKES E, SCHUSTER M, et al. , The role of the oxide component in the development of copper composite catalysts for methanol synthesis[J]. Angew Chem-Int Ed,2013,52:6536−6540. doi: 10.1002/anie.201301419
    [15] SCHUMANN J, EICHELBAUM M, LUNKENBEIN T, et al. Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO: M (M = Al, Ga, Mg) catalysts[J]. ACS Catal,2015,5:3260−3270. doi: 10.1021/acscatal.5b00188
    [16] SLOCZYNKI J, GRABOWSKI R, KOZLOWSKA A, et al. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Appl Catal A: Gen,2003,249:129−138. doi: 10.1016/S0926-860X(03)00191-1
    [17] NISHIDA K, LI D, ZHAN Y, et al. Effective MgO surface doping of Cu/Zn/Al oxides as water-gas shift catalysts[J]. Appl Clay Sci,2009,44:211−217. doi: 10.1016/j.clay.2009.02.005
    [18] 张 凡, 冯 波, 段雪蕾, 等. 铝添加量对Cu /ZnO/Al2O3甲醇合成催化剂性能的影响[J]. 燃料化学学报,2019,47(3):323−328.

    ZHANG Fan, FENG Bo, DUAN Xuelei, et al. Effect of aluminum proportion on the Cu/ZnO/Al2O3 methanol-synthesis catalyst[J]. J Fuel Chem Technol,2019,47(3):323−328.
    [19] SCHUMANN J, LUNKENBEIN T, TARASOV A, et al. Synthesis and characterisation of a highly active Cu/ZnO: Al catalyst[J]. ChemCatChem,2014,6:2889−2897. doi: 10.1002/cctc.201402278
    [20] MILLAR G, HOLM I, UWINS P, et al. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. J Chem Soc-Faraday Trans, 1998, 94: 593–600.
    [21] SCHUMANN J, TARASOV A, THOMAS N, et al. Cu, Zn-based catalysts for methanol synthesis: On the effect of calcination conditions and the part of residual carbonates[J]. Appl Catal A: Gen,2016,516:117−126. doi: 10.1016/j.apcata.2016.01.037
    [22] BEMS B, SCHUR M, DASSENOY A, et al. Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chem-A Eur J,2003,9:2039−2052. doi: 10.1002/chem.200204122
    [23] BALTES C, VUKOJEVIC S, SCHUTH F, Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258: 334–344.
    [24] ZHANG F, ZHANG Y, LIU Y, et al. Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods[J]. Mol Catal,2017,441:190−198. doi: 10.1016/j.mcat.2017.08.015
    [25] 高鹏, 李枫, 赵宁, 等. 以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报,2014,30(6):1155−1162. doi: 10.3866/PKU.WHXB201401252

    GAO Peng, LI Feng, ZHAO Ning, et al. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phy-Chim Sin,2014,30(6):1155−1162. doi: 10.3866/PKU.WHXB201401252
    [26] GAO P, LI F, ZHAN H, et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal,2013,298:51−60. doi: 10.1016/j.jcat.2012.10.030
    [27] ZHANG F, YANG P, XU X, et al. The role of CO2 over different binary catalysts in methanol synthesis[J]. Catal Today,2022,402:183−188. doi: 10.1016/j.cattod.2022.03.037
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  26
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-21
  • 修回日期:  2024-04-07
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-05-13

目录

    /

    返回文章
    返回