留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温熔盐辅助铈掺杂钴基氢氧化物用于工业级电催化析氧反应

王福利 吕千喜 董宜文 谢静宜 王志才 董斌 柴永明

王福利, 吕千喜, 董宜文, 谢静宜, 王志才, 董斌, 柴永明. 低温熔盐辅助铈掺杂钴基氢氧化物用于工业级电催化析氧反应[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60456-1
引用本文: 王福利, 吕千喜, 董宜文, 谢静宜, 王志才, 董斌, 柴永明. 低温熔盐辅助铈掺杂钴基氢氧化物用于工业级电催化析氧反应[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60456-1
WANG Fuli, LÜ Qianxi, DONG Yiwen, XIE Jingyi, WANG Zhicai, DONG Bin, CHAI Yongming. Ce-doped cobalt-based hydroxide assisted with low-temperature molten salt for industrial oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60456-1
Citation: WANG Fuli, LÜ Qianxi, DONG Yiwen, XIE Jingyi, WANG Zhicai, DONG Bin, CHAI Yongming. Ce-doped cobalt-based hydroxide assisted with low-temperature molten salt for industrial oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60456-1

低温熔盐辅助铈掺杂钴基氢氧化物用于工业级电催化析氧反应

doi: 10.1016/S1872-5813(24)60456-1
基金项目: 国家自然科学基金面上基金 (52174283, 52274308), 中国石油大学(华东)研究生创新基金项目和中央高校基本科研业务费专项资金(23CX04028A)资助
详细信息
    通讯作者:

    Tel: +86-532-86981156, Fax: +86-532-86981156, E-mail: dongbin@upc.edu.cn

    ymchai@upc.edu.cn

  • 中图分类号: O643.36

Ce-doped cobalt-based hydroxide assisted with low-temperature molten salt for industrial oxygen evolution reaction

Funds: The project was supported by the National Natural Science Foundation of China (52174283, 52274308), Innovation Fund Project for Graduate Student of China University of Petroleum (East China) and the Fundamental Research Funds for the Central Universities (23CX04028A).
  • 摘要: 开发低成本、高性能的析氧电催化剂提升电化学水分解的效率,对于氢能的大规模利用具有重要的意义。钴基氢氧化物是一类极具潜力的析氧(OER)电催化剂,但是较差的导电性与催化活性严重制约了其应用推广。本研究采用一步低温熔盐法合成了铈掺杂的硝酸氢氧化钴电催化剂(Ce-CoNH/CF)。该催化剂在1 mol/L KOH电解液中具有最低的过电位(448 mV @ 1000 mA/cm2)。塔菲尔(Tafel)斜率、循环伏安(CV)和电化学阻抗谱(EIS)测试表明,快速的反应动力学、高效的电化学活性比表面积(ECSA)和极低的电荷转移电阻(Rct)共同作用使得催化剂具有优异的性能。并且在实验室条件下的模拟工业化测试也表明,Ce-CoNH/CF在工业级高温、高浓度的电解液(6 mol/L KOH,70 ℃)中同样展现出了出色的析氧性能。
  • 图  1  所制备催化剂的结构示意图

    Figure  1  Structure diagram of the prepared catalyst

    图  2  (a) Ce-CoNH/CF和CoNH/CF的XRD谱图;(b) CoNH/CF和(c) Ce-CoNH/CF的SEM图像;(d) Ce-CoNH/CF的TEM和HRTEM图像;(e) Ce-CoNH/CF的EDS谱图和(f)元素映射图像

    Figure  2  (a) XRD patterns of Ce-CoNH/CF and CoNH/CF; SEM images of (b) CoNH/CF and (c) Ce-CoNH/CF; (d) TEM and HRTEM images of Ce-CoNH/CF; EDS diagram (e) and corresponding SEM-Mapping (f) of Ce-CoNH/CF

    图  3  (a) Ce-CoNH/CF和CoNH/CF的XPS全谱图;(b) Ce-CoNH/CF和CoNH/CF的XPS Co 2p谱图;(c) Ce-CoNH/CF和CoNH/CF的XPS O 1s谱图;(d) Ce-CoNH/CF的XPS Ce 3d谱图

    Figure  3  (a) XPS spectra of Ce-CoNH/CF and CoNH/CF; (b) XPS spectra of Co 2p for Ce-CoNH/CF and CoNH/CF; (c) XPS spectra of O 1s for Ce-CoNH/CF and CoNH/CF; (d) XPS spectra of Ce 3d for Ce-CoNH/CF

    图  4  在1 mol/L KOH电解液中不同样品的电化学性能: (a) LSV曲线;(b) 过电位柱状图; (c) 双电层电容曲线;(d) Tafel图;(e) EIS谱图;(f) Ce-CoNH/CF的稳定性测试

    Figure  4  Electrocatalytic properties of different samples in 1 mol/L KOH: (a) LSV curves; (b) Histogram for overpotential; (c) Electric double layer capacitance curves; (d) Tafel diagram; (e) EIS spectra; (f) Stability test of Ce-CoNH/CF

    图  5  在6和1 mol/L KOH电解液中Ce-CoNH/CF的电化学性能: (a) LSV曲线;(b) 过电位柱状图; (c) Tafel图;(d) 在不同电流密度下(200、400、600、800、1000 mA/cm2)阶梯型稳定性;(e) 模拟工业级测试条件下的恒电流稳定性测试

    Figure  5  Electrocatalytic properties of different samples in 6 mol/L and 1 mol/L KOH: (a) LSV curves; (b) Histogram for overpotential; (c) Tafel diagram; (d) Multi-step chronopotentiometric curves at different current densities (200,400,600,800,1000 mA/cm2); (e) Stability test of Ce-CoNH/CF under simulating industrial condition

  • [1] 李俊莉, 杨玉琴, 皇甫鑫强, 等. CoP/RGO复合材料的制备及结构性能研究[J]. 化工新型材料,2019,47(11):141−144.

    LI Junli, YANG Yuqin, HUANGFU Xinqiang, et al. Study on the preparation and structure property of CoP/RGO[J]. New Chem Mater,2019,47(11):141−144.
    [2] FU Q, HAN J C, WANG X J, et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis[J]. Adv Mater,2021,33(6):1907818. doi: 10.1002/adma.201907818
    [3] WU X, ZHOU S, WANG Z, et al. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater[J]. Adv Energy Mater,2019,9(34):1901333. doi: 10.1002/aenm.201901333
    [4] CHI J, YU H. Water electrolysis based on renewable energy for hydrogen production[J]. Chin J Catal,2018,39(3):390−394. doi: 10.1016/S1872-2067(17)62949-8
    [5] 王培灿, 雷青, 刘帅, 等. 电解水制氢MoS2催化剂研究与氢能技术展望[J]. 化工进展,2019,38(1):278−290.

    WANG Peican, LEI Qing, LIU Shuai, et al. MoS2 based electrocatalysts for hydrogen evolution and the prospect of hydrogen energy technology[J]. Chem Eng Prog,2019,38(1):278−290.
    [6] HUANG W, LI J, LIAO X, et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution[J]. Adv Mater,2022,34(18):2200270. doi: 10.1002/adma.202200270
    [7] ZHAO Y, ADIYERI SASEENDRAN D P, HUANG C, et al. Oxygen evolution/reduction reaction catalysts: From in-situ monitoring and reaction mechanisms to rational design[J]. Chem Rev,2023,123(9):6257−6358. doi: 10.1021/acs.chemrev.2c00515
    [8] REIER T, OEZASLAN M, STRASSER P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catal,2012,2(8):1765−1772. doi: 10.1021/cs3003098
    [9] PAN Q, WANG L. Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts[J]. J Power Sources,2021,485(15):229335.
    [10] QIAO C, RAFAI S, CAO T, et al. Tuning surface electronic structure of two-dimensional cobalt-based hydroxide nanosheets for highly efficient water oxidation[J]. ChemCatChem,2020,12(10):2823−2832. doi: 10.1002/cctc.202000246
    [11] WU L, YU L, ZHU Q, et al. Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation[J]. Nano Energy,2021,83:105838. doi: 10.1016/j.nanoen.2021.105838
    [12] 李宇明, 刘梓烨, 张启扬, 等. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报,2021,72(8):3919−3932. doi: 10.11949/0438-1157.20201932

    LI Yuming, LIU Ziye, ZHANG Qiyang, et al. Preparation of nitrogen-doped carbon materials and their applications in catalysis[J]. CIESC J,2021,72(8):3919−3932. doi: 10.11949/0438-1157.20201932
    [13] EDE S R, LUO Z. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: A comprehensive review[J]. J Mater Chem A,2021,9:20131−20163. doi: 10.1039/D1TA04032D
    [14] LUO Y, ZHANG Z, YANG F, et al. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media[J]. Energy Environ Sci,2021,14:4610−4619. doi: 10.1039/D1EE01487K
    [15] WANG F L, ZHOU Y N, LV J Y, et al. Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density[J]. Int J Hydrog Energy,2022,47(2):1016−1025. doi: 10.1016/j.ijhydene.2021.10.117
    [16] MA Y, CHU J, LI Z, et al. Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution[J]. Small,2018,14(52):1803783. doi: 10.1002/smll.201803783
    [17] XU Q, CHU M, LIU M, et al. Fluorine-triggered surface reconstruction of Ni3S2 electrocatalysts towards enhanced water oxidation[J]. Chem Eng J,2021,411(1):128488.
    [18] ZHOU Y N, WANG F L, DOU S Y, et al. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction[J]. Chem Eng J,2022,427(1):131643.
    [19] SUN C, HE Y, ALHARBI N S, et al. Three-dimensional ordered macroporous molybdenum doped NiCoP honeycomb electrode for two-step water electrolysis[J]. J Colloid Interface Sci,2023,642(15):13−22.
    [20] LIAO Y, HE R, PAN W, et al. Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution[J]. Chem Eng J,2023,23:142669.
    [21] ZHOU Y N, LIU X, YU C J, et al. Boosting hydrogen evolution through hydrogen spillover promoted by Co-based support effect[J]. J Mater Chem A,2023,11:6945−6951. doi: 10.1039/D2TA09784B
    [22] WANG F L, ZHANG X Y, ZHOU J C, et al. Amorphous-crystalline FeNi2S4@NiFe-LDH nanograsses with molten salt as an industrially promising electrocatalyst for oxygen evolution[J]. Inorg Chem Front,2022,9:2068−2080. doi: 10.1039/D2QI00003B
    [23] XIA L, BO L, SHI W, et al. Defect and interface engineering of templated synthesis of hollow porous Co3O4/CoMoO4 with highly enhanced electrocatalytic activity for oxygen evolution reaction[J]. Chem Eng J,2023,452(1):139250.
    [24] ZHANG X Y, LI F T, DONG Y W, et al. Dynamic anion regulation to construct S-doped FeOOH realizing 1000 mA·cm−2-level-current-density oxygen evolution over 1000 h[J]. Appl Catal B: Environ,2022,315(15):121571.
    [25] LIU M, MIN K, HAN B, et al. Interfacing or doping? Role of Ce in highly promoted water oxidation of NiFe-Layered double hydroxide[J]. Adv Energy Mater,2021,11(33):2101281. doi: 10.1002/aenm.202101281
    [26] SAAD A, LIU D, WU Y, et al. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance[J]. Appl Catal B: Environ,2021,298(5):120529.
    [27] ZHANG N, HU Y, AN L. Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction[J]. Angew Chem Int Ed, 2022, 61 (35): e202207217.
    [28] WEN Q, WANG S, WANG R, et al. Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction[J]. Nano Res,2023,16:2286−2293. doi: 10.1007/s12274-022-5163-z
    [29] NIETHER C, FAURE S, BORDET A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nat Energy,2018,3:476−483. doi: 10.1038/s41560-018-0132-1
    [30] LAGADEC M, GRIMAUD A. Water electrolysers with closed and open electrochemical systems[J]. Nat Mater,2020,19:1140−1150. doi: 10.1038/s41563-020-0788-3
    [31] YU D, HAO Y, HAN S, et al. Ultrafast combustion synthesis of robust and efficient electrocatalysts for high-current-density water oxidation[J]. ACS Nano,2023,17(2):1701−1712. doi: 10.1021/acsnano.2c11939
    [32] ZHANG H, ZHOU Y, XU M, et al. Interface engineering on amorphous/crystalline hydroxides/sulfides heterostructure nanoarrays for enhanced solar water splitting[J]. ACS Nano,2023,17(1):636−647. doi: 10.1021/acsnano.2c09880
  • 加载中
图(5)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  45
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-02-23
  • 录用日期:  2024-02-27
  • 网络出版日期:  2024-05-21

目录

    /

    返回文章
    返回