留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3前驱体对Cu/ZnO/Al2O3催化甲醇重整制氢性能的影响

黄敏 薄其飞 李娟 乔靖萱 袁善良 张彪 陈洪林 蒋毅

黄敏, 薄其飞, 李娟, 乔靖萱, 袁善良, 张彪, 陈洪林, 蒋毅. Al2O3前驱体对Cu/ZnO/Al2O3催化甲醇重整制氢性能的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60459-7
引用本文: 黄敏, 薄其飞, 李娟, 乔靖萱, 袁善良, 张彪, 陈洪林, 蒋毅. Al2O3前驱体对Cu/ZnO/Al2O3催化甲醇重整制氢性能的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60459-7
HUANG Min, BO Qifei, LI Juan, QIAO Jingxuan, YUAN Shanliang, ZHANG Biao, CHEN Honglin, JIANG Yi. Influence of Al2O3 precursors on Cu/ZnO/Al2O3 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60459-7
Citation: HUANG Min, BO Qifei, LI Juan, QIAO Jingxuan, YUAN Shanliang, ZHANG Biao, CHEN Honglin, JIANG Yi. Influence of Al2O3 precursors on Cu/ZnO/Al2O3 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60459-7

Al2O3前驱体对Cu/ZnO/Al2O3催化甲醇重整制氢性能的影响

doi: 10.1016/S1872-5813(24)60459-7
基金项目: 四川省科技成果转移转化示范项目(2021ZHCG0019),基础科研计划项目(WDZC202202),2023年中国科学院“西部学者”项目资助
详细信息
    通讯作者:

    Tel: 028-85229457, E-mail: a2004004@126.com

    Tel: 028-85229457, E-mail: yjiangcioc@163.com

  • 中图分类号: TQ426

Influence of Al2O3 precursors on Cu/ZnO/Al2O3 catalysts for hydrogen production from steam reforming of methanol

Funds: The project was supported by Sichuan Provincial Science and Technology Achievement Transfer and Transformation Demonstration Project (2021ZHCG0019), Basic Research Program Project (WDZC202202) and 2023 Chinese Academy of Sciences “Western Scholars” Project Support.
  • 摘要: 采用共沉淀法制备了一系列Cu/ZnO/Al2O3催化剂,通过XRD、BET、H2-TPR、N2O化学吸附、XPS表征技术,研究了Al2O3前驱体对催化剂结构的影响,同时对其在甲醇重整制氢中的性能进行了考察。结果表明,当Al3+与Cu2+、Zn2+同时共沉淀时,Al3+对碱式碳酸盐中Cu2+-Zn2+部分取代生成类水滑石结构,增强了Zn-Al之间的相互作用。相反,在Cu2+、Zn2+完成共沉淀后,引入Al2O3前驱体对消除Al3+对碱式碳酸盐中Cu-Zn取代的不良影响具有积极作用,有利于促进Cu-ZnO间的相互作用、CuO物种的分散和催化剂的还原,进一步促进表面Cu的分散,有利于其活性的提升。其中,以拟薄水铝石为铝源制备的催化剂呈现出优异的活性。在水醇物质的量比为1.2,反应温度为493 K的条件下,甲醇转化率可达94.8%,H2时空收率可达97.5 mol/(kg·h),并且连续运行25 h其活性仍保持相对稳定。在反应条件下,经过723 K的10 h热处理后,该催化剂的活性损失率仅为5.37%。
  • 图  1  沉淀前驱体(a)和焙烧后样品(b)的XRD谱图

    Figure  1  XRD spectra of precipitated precursor (a) and calcined sample (b)

    图  2  催化剂的N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  2  N2 adsorption-desorption isotherms (a) and pore diameter distribution (b) of calcined CZA-x catalysts

    图  3  催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of calcined catalysts

    图  4  催化剂还原后的XPS谱图

    Figure  4  XPS (a) Cu 2p, (b) Cu LMM AES, (c) Zn 2p, (d) Al 2p spectra of reduced CZA-x catalysts

    图  5  CZA-P催化剂还原后的TEM (a)、 HRTEM(b) 和 TEM-EDX mapping(c)元素分布图像

    Figure  5  TEM (a), HRTEM (b) and TEM-EDX mapping elemental distribution (c) after CZA-P catalyst reduction

    图  6  493 K时Al2O3前驱体对催化剂活性的影响(a)甲醇转化率、(b)H2时空收率及CO选择性

    Figure  6  Evaluation of catalyst performance: (a) methanol conversion, (b) H2 time-space yield and CO selectivity

    图  7  催化剂的稳定性比较(a)493 K稳定性测试、(b)热处理前后催化剂在493 K时甲醇转化率比较

    Figure  7  Comparison of catalysts stability: (a) stability test at 493 K, (b) comparing methanol conversion between catalysts before and after thermal treatedReaction conditions: 493 K, H2O/CH3OH= 1.2, WHSVtotal = 2 h−1; thermal treatment conditions: 723 K, H2O/CH3OH= 1.2, WHSVtotal = 2 h−1,10 h.

    表  1  催化剂沉淀前驱体组分信息

    Table  1  Component information of catalyst precipitated precursor

    samples Main peak location PDF number
    Malachite 14.715,17.496,24.092,29.470 75−1163
    Rosasite 14.637,17.467,24.075,29.591 35−0502
    Aurichalcite 13.028,24.032,27.857,32.655 38−0152
    HTIC 11.750,23.579,34.617,39.258 38−0487
    Al(OH)3 18.502,20.464,21.049,21.343 85−0611
    下载: 导出CSV

    表  2  催化剂的织构性能和晶粒尺寸

    Table  2  The crystalline size and texture properties of CZA-x catalysts

    Catalyst Cu content/%a SBET/(m2·g−1)b vpore/(cm3·g−1)c dp/nmc dCuO/nmd dCu/%e
    CZA-NO3 59.7 60.43 0.146 3.62 9.4 7.4
    CZA-OH 59.3 80.14 0.147 3.65 8.6 8.6
    CZA-P300 58.9 81.56 0.254 13.18 8.9 8.2
    CZA-A 59.1 112.34 0.252 3.67 8.0 9.2
    CZA-P 59.7 84.22 0.258 3.64 7.5 10.3
    a: Obtained by ICP-OES; b: Calculated by BET method; c: Calculated by BJH method; d: Calculated from Scherrer equation based on CuO (002); e: Calculated from N2O chemisorption.
    下载: 导出CSV

    表  3  催化剂的H2-TPR参数

    Table  3  H2-TPR parameters for catalysts

    Sample Temperature/℃ H2 consumption/(mmol·g−1)
    α β γ α β γ total
    CZA-NO3 209 242 273 0.49 3.02 6.45 9.96
    CZA-OH 236 262 3.06 6.59 9.65
    CZA-P300 229 254 2.79 6.56 9.35
    CZA-A 217 242 3.24 6.17 9.41
    CZA-P 209 236 4.71 5.76 10.47
    下载: 导出CSV

    表  4  催化剂还原后的XPS参数

    Table  4  XPS parameters of the reduced catalysts

    Catalyst Binding energy/eV Cu+/Cu/% Cu0/Cu/% Cu0/Cu+/%
    Cu0 Cu+
    CZA-P 567.7 569.7 76.1 23.9 31
    CZA-OH 568.1 569.8 78.9 21.1 27
    CZA-A 568.3 569.9 64.8 35.2 54
    CZA-P300 568.5 569.7 30.6 69.2 27
    CZA-NO3 568.1 569.8 79.5 20.5 26
    下载: 导出CSV

    表  5  与文献报道催化剂活性对比

    Table  5  Comparison with catalyst activity reported in the literature

    Catalyst Reaction temperatre
    T/K
    n(H2O)/
    n(MeOH)
    GHSV/
    WHSV(h−1)
    Methanol conversion
    /%
    After thermal treatment
    methanol conversion/%
    Reference
    CZA-P 493 1.2 2.0(W) 94.8 89.7 this work
    商用催化剂 493 1.2 2.0(W) 95.0 84.3 this work
    Cu-Ce-A 493 1.2 1760(G) 40 [34]
    Ce/Cu/ZnAl 513 1.2 800(G) 92 [35]
    0.38B/CZA 523 3 9000 mL/(g·h) 93 [36]
    下载: 导出CSV
  • [1] LEBROUHI B E, DJOUPO J J, LAMRANI B, et al. Global hydrogen development-A technological and geopolitical overview[J]. Int J Hydrogen Energy,2022,47(11):7016−7048. doi: 10.1016/j.ijhydene.2021.12.076
    [2] GABRIEL K S, EL-EMAM R S, ZAMFIRESCU C. Technoeconomics of large-scale clean hydrogen production-A review[J]. Int J Hydrogen Energy,2022,47(72):30788−30798. doi: 10.1016/j.ijhydene.2021.10.081
    [3] RIBEIRINHA P, MATEOS-PEDRERO C, BOAVENTURA M, et al. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: Synthesis, characterization and kinetic model[J]. Appl Catal B: Environ,2018,221:371−379. doi: 10.1016/j.apcatb.2017.09.040
    [4] Sá S, SILVA H, BRANDAO L, et al. Catalysts for methanol steam reforming—A review[J]. Appl Catal B: Environ,2010,99(1-2):43−57. doi: 10.1016/j.apcatb.2010.06.015
    [5] SUN Z, SUN Z Q. Hydrogen generation from methanol reforming for fuel cell applications: A review[J]. J Cent South Univ,2020,27(4):1074−1103. doi: 10.1007/s11771-020-4352-8
    [6] XU X, SHUAI K, XU B. Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen[J]. Catalysts,2017,7(6):183. doi: 10.3390/catal7060183
    [7] PU Y-C, LI S-R, YAN S, et al. An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming[J]. Fuel,2019,241:607−615. doi: 10.1016/j.fuel.2018.12.067
    [8] AJAMEIN H, HAGHIGHI M, SHOKRANI R, et al. On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: Effect of precursor, ultrasound irradiation and urea/nitrate ratio[J]. J Mol Catal A: Chem,2016,421:222−234. doi: 10.1016/j.molcata.2016.05.028
    [9] CHENG Z, ZHOU W, LAN G, et al. High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy[J]. J Energy Chem,2021,63:550−557. doi: 10.1016/j.jechem.2021.08.025
    [10] YANG X, MENG Q, DING G, et al. Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components[J]. Appl Catal A-Gen,2018,561:78−86. doi: 10.1016/j.apcata.2018.04.005
    [11] BEHRENS M, ZANDER S, KURR P, et al. Performance improvement of nanocatalysts by promoter-induced defects in the support material: methanol synthesis over Cu/ZnO: Al[J]. J Am Chem Soc,2013,135(16):6061−6068. doi: 10.1021/ja310456f
    [12] FU W, BAO Z, DING W, et al. The synergistic effect of the structural precursors of Cu/ZnO/Al2O3 catalysts for water–gas shift reaction[J]. Catal Commun,2011,12(6):505−509. doi: 10.1016/j.catcom.2010.11.017
    [13] KOWALIK P, KONKOL M, ANTONIAK K, et al. The effect of the precursor ageing on properties of the Cu/ZnO/Al2O3 catalyst for low temperature water–gas shift (LT-WGS)[J]. J Mol Catal A: Chem,2014,392:127−133. doi: 10.1016/j.molcata.2014.05.003
    [14] ZHANG F, LIU Y, XU X, et al. Effect of Al-containing precursors on Cu/ZnO/Al2O3 catalyst for methanol production[J]. Fuel Process Technol,2018,178:148−155. doi: 10.1016/j.fuproc.2018.04.021
    [15] BEHRENS M, KASATKIN I, KÜHL S, et al. Phase-pure Cu, Zn, Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts[J]. Chem Mater,2009,22(2):386−397.
    [16] WANG S, LIU H. Selective hydrogenolysis of glycerol to propylene glycol on hydroxycarbonate-derived Cu-ZnO-Al2O3 catalysts[J]. Chin J Catal,2014,35(5):631−643. doi: 10.1016/S1872-2067(14)60094-2
    [17] SEBASTIAN KULD, MAX THORHAUGE, HANNE FALSIG, et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science,2016,352(6288):969−974. doi: 10.1126/science.aaf0718
    [18] FUJITANI T, NAKAMURA J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts[J]. Appl Catal A: Gen,2000,191:111−129. doi: 10.1016/S0926-860X(99)00313-0
    [19] LEI H, HOU Z, XIE J. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel,2016,164:191−198. doi: 10.1016/j.fuel.2015.09.082
    [20] WANG L, LIU Y, CHEN M, et al. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis[J]. J Catal,2007,246(1):193−204. doi: 10.1016/j.jcat.2006.12.006
    [21] BAHMANI M, VASHEGHANI FARAHANI B, SAHEBDELFAR S. Preparation of high performance nano-sized Cu/ZnO/Al2O3 methanol synthesis catalyst via aluminum hydrous oxide sol[J]. Appl Catal A: Gen,2016,520:178−187. doi: 10.1016/j.apcata.2016.04.018
    [22] KÜHL S, TARASOV A, ZANDER S, et al. Cu-based catalyst resulting from a Cu, Zn, Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in situ XAS study[J]. Chem Eur J,2014,20(13):3782−3792. doi: 10.1002/chem.201302599
    [23] WANG X, CHEN X, YE L, et al. Superior performance of Cu/TiO2 catalyst prepared by ice melting method for low-temperature selective catalytic reduction of NOx by NH3[J]. Mol Catal,2020,497:111225. doi: 10.1016/j.mcat.2020.111225
    [24] ZHANG G, LI Z, ZHENG H, et al. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Appl Catal B: Environ,2015,179:95−105. doi: 10.1016/j.apcatb.2015.05.001
    [25] GUO Q, LI S, LI J, et al. Enhanced CO2 hydrogenation to methanol on the mesostructured Cu–ZnO/Al2O3–ZrO2 catalyst[J]. ACS Appl Energ Mater,2021,4(8):8311−8321. doi: 10.1021/acsaem.1c01542
    [26] LIU C, GUO X, GUO Q, et al. Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2[J]. J Mol Catal A: Chem,2016,425:86−93. doi: 10.1016/j.molcata.2016.09.032
    [27] GONG J, YUE H, ZHAO Y, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc,2012,134(34):13922−13925. doi: 10.1021/ja3034153
    [28] CHEN H, CUI H, LV Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy[J]. Fuel,2022,314:123035. doi: 10.1016/j.fuel.2021.123035
    [29] MA K, TIAN Y, ZHAO Z J, et al. Achieving efficient and robust catalytic reforming on dual-sites of Cu species[J]. Chemical Science,2019,10(9):2578−2584. doi: 10.1039/C9SC00015A
    [30] ZHANG G, ZHAO J, YANG T, et al. In-situ self-assembled Cu2O/ZnO core-shell catalysts synergistically enhance the durability of methanol steam reforming[J]. Appl Catal A: Gen,2021,616:118072. doi: 10.1016/j.apcata.2021.118072
    [31] HOU X, QING S, LIU Y, et al. Enhancing effect of MgO modification of Cu–Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy,2020,45(1):477−489. doi: 10.1016/j.ijhydene.2019.10.164
    [32] ZHANG L, LEI J-T, TIAN Y, et al. Effect of precursor and precipitant concentrations on the catalytic properties of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol,2015,43(11):1366−1374. doi: 10.1016/S1872-5813(15)30041-4
    [33] RANJEKAR A M, YADAV G D. Steam reforming of methanol for hydrogen production: a critical analysis of catalysis, processes, and scope[J]. Ind Eng Chem Res,2021,60(1):89−113. doi: 10.1021/acs.iecr.0c05041
    [34] 王丽宝, 王东哲, 张磊, 等. 铈源对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报,2020,48:852−859.

    WANG Baoli, WANG Dongzhe, ZHANG Lei, et al. Influence of cerium source s on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. J Fuel Chem Technol,2020,48:852−859.
    [35] 杨淑倩, 贺建平, 张娜, 等. 稀土掺杂改性对Cu/ZnAl水滑石衍生物催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46:179−188. doi: 10.1016/S1872-5813(18)30010-0

    YANG Shuqian, HE Jianping, ZHANG Na, et al. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol,2018,46:179−188. doi: 10.1016/S1872-5813(18)30010-0
    [36] 卢培静, 蔡夫锋, 张军, 等. B改性CuZnAlOx催化剂对甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报,2019,47:791−798. doi: 10.1016/S1872-5813(19)30035-0

    LU Peijing, CAI Fufeng, ZHANG Jun, et al. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. J Fuel Chem Technol,2019,47:791−798. doi: 10.1016/S1872-5813(19)30035-0
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-05-07
  • 录用日期:  2024-05-08
  • 网络出版日期:  2024-06-04

目录

    /

    返回文章
    返回