留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Corrosion behavior of co-gasification slag of furfural residue and coal on alumina-silica refractories

MA Xiaotong WANG Zhigang LU Hao LIU Wei WANG Yanxia ZHAO Jiangshan SUN Lingmin YAN Jingchong ZHUANG Shujuan LI Huaizhu KONG Lingxue

马晓彤, 王志刚, 鲁浩, 刘伟, 王烟霞, 赵江山, 孙领民, 颜井冲, 庄淑娟, 李怀柱, 孔令学. 糠醛渣与煤共气化灰渣对硅铝质耐火材料侵蚀行为研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60461-5
引用本文: 马晓彤, 王志刚, 鲁浩, 刘伟, 王烟霞, 赵江山, 孙领民, 颜井冲, 庄淑娟, 李怀柱, 孔令学. 糠醛渣与煤共气化灰渣对硅铝质耐火材料侵蚀行为研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60461-5
MA Xiaotong, WANG Zhigang, LU Hao, LIU Wei, WANG Yanxia, ZHAO Jiangshan, SUN Lingmin, YAN Jingchong, ZHUANG Shujuan, LI Huaizhu, KONG Lingxue. Corrosion behavior of co-gasification slag of furfural residue and coal on alumina-silica refractories[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60461-5
Citation: MA Xiaotong, WANG Zhigang, LU Hao, LIU Wei, WANG Yanxia, ZHAO Jiangshan, SUN Lingmin, YAN Jingchong, ZHUANG Shujuan, LI Huaizhu, KONG Lingxue. Corrosion behavior of co-gasification slag of furfural residue and coal on alumina-silica refractories[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60461-5

糠醛渣与煤共气化灰渣对硅铝质耐火材料侵蚀行为研究

doi: 10.1016/S1872-5813(24)60461-5
详细信息
  • 中图分类号: TQ54

Corrosion behavior of co-gasification slag of furfural residue and coal on alumina-silica refractories

Funds: The project was supported by Shandong Province Natural Science Foundation, China (ZR2020KB014, ZR2022QB206), the National Natural Science Foundation of China (22178001), Anhui Provincial Natural Science Foundation (2308085Y19), Research Project for Outstanding Youth of Department of Education of Anhui Province (2022AH030045).
More Information
  • 摘要: 糠醛渣与煤共气化是实现其清洁高效利用的可行路径,但煤中配入碱金属含量高的糠醛渣易造成气化炉耐火材料的腐蚀。本研究选用两种不同硅铝比(Si/Al)的气化煤和一种糠醛渣,利用X射线衍射仪(XRD)、扫描电镜(SEM-EDS)和FactSage热力学计算软件研究了配入糠醛渣的共气化灰渣对硅砖、刚玉砖、高铝砖和莫来石砖四种硅铝质耐火材料侵蚀的影响,分析了灰渣侵蚀耐火材料的机理。随着糠醛渣配比的增加,共气化灰渣对刚玉砖、高铝砖和莫来石砖三种铝质耐火材料的渗透率均呈先降低后增加的趋势,硅砖的渗透率呈逐渐降低的趋势。配入糠醛渣的灰渣中K2O、SiO2与铝质耐火材料中Al2O3反应生成的难熔矿物质白榴石(KAlSi2O6),阻碍灰渣在耐火材料的渗透。随着糠醛渣配比的增加,灰渣中K2O含量增加,形成低熔点矿物质钾霞石(KAlSiO4),加剧了灰渣在耐火材料的渗透。灰渣与硅砖间发生明显的矿物酸碱反应,随着糠醛渣配比的增加,更多的灰渣与硅砖中SiO2在表面发生反应,渗入硅砖内的灰渣量降低。硅砖的侵蚀主要由矿物酸碱反应引起,而铝质耐火材料的腐蚀主要由灰渣渗透决定的。氧化铝为主的耐火材料的渗透率能与灰渣黏度建立线性关系,其渗透率随灰渣黏度的降低而增加,这也导致低黏度的高Si/Al渣比高黏度的低Si/Al渣表现出更强的渗透性。
  • Figure  1  Cross section of silica brick after corrosion

    Figure  2  Spreading behavior of SA slag with different ratio BA on refractory

    Figure  3  Spreading behavior of QA slag with different ratio BA on refractory

    Figure  4  Percolation rate and corrosion ratio of slag on refratory

    (a): SZ brick after the SA slag corrosion; (b): SZ brick after the QA slag corrosion; (c): ML brick after the SA slag corrosion;(d): ML brick after the QA slag corrosion; (e): GY brick after the SA slag corrosion; (f): GY brick after the QA slag corrosion;(g): GL brick after the SA slag corrosion; (h): GL brick after the QA slag corrosion.

    Figure  5  Slag viscosity variation with BA ratio

    Figure  6  Percolation rate of slag to refractory versus ash viscosity

    (a): SZ brick; (b): ML brick; (c): GY brick; (d): GL brick.

    Figure  7  XRD patterns of SZ bricks after corrosion

    (a): SA slag corrosion; (b): QA slag corrosion.

    Figure  8  XRD patterns of GY bricks after corrosion

    (a): SA slag corrosion; (b): QA slag corrosion.

    Figure  9  SEM-EDS of GY bricks after corrosion

    (a): SEM image of QA corrosion; (b):element distribution of QA corrosion; (c): SEM image of QA2 corrosion; (d):element distribution of QA2 corrosion; (e): SEM image of QA3 corrosion; (f): element distribution of QA3 corrosion.

    Figure  10  Thermodynamic calculation of interaction of slag with GY bricks

    (a) :Slag composition of QA and GY; (b): Solid phase composition of QA and GY; (c): Slag composition of QA2 and GY; (d): Solid phase composition of QA2 and GY; (e): Slag composition of QA3 and GY; (f): Solid phase composition of QA3 and GY.

    Table  1  Chemical composition of refractory materials

    Sample Content w/%
    MgO CaO SiO2 Al2O3 Fe2O3
    SZ 0.38 3.14 94.16 1.55 0.77
    ML 0.28 0.00 30.93 67.83 0.96
    GY 0.00 0.23 19.60 80.06 0.11
    GL 1.92 0.26 17.16 79.39 1.27
    下载: 导出CSV

    Table  2  Porosity and bulk density of refractory materials

    Porosity/% Bulk density/(g·cm−3 )
    SZ 20.82 2.18
    ML 11.54 2.90
    GY 11.21 3.27
    GL 18.16 3.16
    下载: 导出CSV
  • [1] ZHU X Z, ZHANG B F, ZHU Y H, et al. Development application and optimization of biomass (furfural residue) circulating fluidized bed boiler[J]. M-Sized Nitro Fer Prog,2020,(1):56−58+62.
    [2] BI S X, LIU W Y, WANG C H, et al. A versatile approach to the synthesis of biomass derived from furfural residues as a potential adsorbent[J]. J Environ Chem Eng,2018,6(4):5049−5052. doi: 10.1016/j.jece.2018.07.038
    [3] FENG T J, ZHANG J, ZHANG S Y. Progress of furfural production technology and market analysis in China [J]. Henan Chem Ind, 2019, 36(9): 7−10.
    [4] ZHOU T, ZHANG W, YUAN S F, et al. Progress in the change of ash melting behavior and slagging characteristics of co-gasification of biomass and coal: A review[J]. J Energy Inst,2023,111:101414. doi: 10.1016/j.joei.2023.101414
    [5] NAKANO J, SRIDHAR S, BENNETT J, et al. Interaction of refractory materials with molten gasifier slags[J]. Int J Hydrog Energ,2011,36(7):4595−4604. doi: 10.1016/j.ijhydene.2010.04.117
    [6] CAI B L, LI H X, ZHAO S X, et al. Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere [J]. Ceram Int, 2018, 44(5): 4592-4602.
    [7] YU G S, ZHU Q R, CHI G Z, et al. Study on slag composition and flow property in a bench-scale OMB gasifier[J]. Fuel Process Technol,2012,104:136−143. doi: 10.1016/j.fuproc.2012.05.001
    [8] MEDRALA A M, MAGDZIARZ A, REC I K, et al. The influence of potassium-richbiomass ashes on steel corrosion above 550 ℃[J]. Energ Convers Manage,2019,187:15−28. doi: 10.1016/j.enconman.2019.02.074
    [9] ZHANG X, HUANG C, TANG A. S. Effect of chemical composition on corrosion resistance to cryolite of refractory[J]. Bull Chin Ceram Soc,2020,39(7):2302−2307.
    [10] ZHANG G. J Study on high temperature corrosion characteristics of refractory materials by coal and biomass slag[J]. Coal quality technol,2017,(6):68−72.
    [11] SI Y C, LI H X, SUN H G, et al. High temperature corrosion of SiC-CaAl12O19 composite refractory by coal slag[J]. Corros Sci,2022,206:110506. doi: 10.1016/j.corsci.2022.110506
    [12] REINMOLLER M, KLINGER M, THIEME E, et al. Analysis and prediction of slag-induced corrosion of chromium oxide-free refractory materials during fusion of coal and biomass ash under simulated gasification conditions[J]. Fuel Process Technol,2016,149:218−230. doi: 10.1016/j.fuproc.2016.04.022
    [13] CHEN D L, DU Y, ZHOU C, et al. Slagging characteristics of coal ash with different alkali-acid ratios on corundum refractories[J]. J Chin Soc Power Eng,2013,33(4):256−260.
    [14] WANG H, SHEN R L, WANG H M, et al. Effect of crystal phase composition on alkali corrosion resistance of silica refractories[J]. Bull Chin Ceram Soc,2023,42(3):1130−1136.
    [15] DANG L X. Corrosion behavior of potassium sodium alkali metals on refractories [D]. Beijing, China: China University of Petroleum, 2019.
    [16] QI Y. Research on viscosity-temperature characteristics of Shenhua bituminous coal and straw mixed gasification ash [D]. Jiangsu, China: Jiangsu University, 2019.
    [17] KANEKO T K, ZHU J X, HOWELL N, et al. The effects of gasification feedstock chemistries on the infiltration of slag into the porous high chromia refractory and their reaction products[J]. Fuel,2014,115:248−263. doi: 10.1016/j.fuel.2013.06.052
    [18] MAO E L, BAI X S, LI Y, et al. Chromium-free alkaline refractories for cement kilns[J]. China Cem,2013,(9):57−59.
    [19] ILYUSHECHKIN A Y, HLA S S, CHEN X, et al. Effect of sodium in brown coal ash transformations and slagging behavior under gasification conditions[J]. Fuel Process Technol,2018,(179):86−98.
    [20] GEHRE P, ANEZIRIS C G. Investigation of slag containing refractory materials for gasification processes[J]. J Eur Ceram Soc,2012,32(16):4051−4062. doi: 10.1016/j.jeurceramsoc.2012.06.014
    [21] MA X T, WANG Z G, LU H, et al. Study on the effect of furfural residue on the melting characteristics of gasified coal ash[J]. J Fuel Chem Technol,2023,51(10):1373−1382. doi: 10.1016/S1872-5813(23)60355-X
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-06
  • 修回日期:  2024-03-19
  • 录用日期:  2024-03-20
  • 网络出版日期:  2024-06-05

目录

    /

    返回文章
    返回