Abstract:
The modified attapulgite was obtained by acid activation and loaded magnetic nano-ferrite composite modification. The applicability of attapulgite in the adsorption furnace of semi-volatile heavy metal PbCl
2 vapor in different flue gas atmosphere was explored. Besides, the adsorption mechanism of PbCl
2 vapor was investigated by combining FT-IR, BET, XRD and DFT theoretical calculation. The results show that acid activation increases the proportion of surface-active sites by decomposing impurities in the original ore, and the double active adsorption sites formed by the composite modified iron-based oxides and attapulgite lattice oxygen significantly enhance the adsorption capacity of PbCl
2. The maximum adsorption capacity of Fe/HP
2 samples with the mass ratio of 1∶2 is 67.62 (mg PbCl
2/g adsorbent). When the high-temperature flue gas contains O
2, SO
2 and a small amount of H
2O, it can enhance the adsorption capacity of modified attapulgite. In addition, DFT theoretical calculations show that H
2O, O
2, SO
2 and PbCl
2 all undergo chemisorption on the surface of ATT(110), and it also demonstrates that H
2O promotes the adsorption of PbCl
2 on the surface of ATT(110) and Fe/ATT(110) through co-adsorption. Weaker adsorption of PbCl
2 at the adsorbed oxygen sites formed by H
2O molecules instead of at the lattice oxygen sites can be preferentially bond to double active sites (the lattice oxygen sites and the oxygen site) in the iron oxide clusters through strong interactions on the Fe/ATT(110) surface.