留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昭通褐煤氨解可溶化转化及热溶物中氧和氮的赋存形态

任宇瑶 周国莉 刘豪杰 滕道光 曹亦俊 邢宝林 李鹏

任宇瑶, 周国莉, 刘豪杰, 滕道光, 曹亦俊, 邢宝林, 李鹏. 昭通褐煤氨解可溶化转化及热溶物中氧和氮的赋存形态[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023088
引用本文: 任宇瑶, 周国莉, 刘豪杰, 滕道光, 曹亦俊, 邢宝林, 李鹏. 昭通褐煤氨解可溶化转化及热溶物中氧和氮的赋存形态[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023088
REN Yuyao, ZHOU Guoli, LIU Haojie, TENG Daoguang, CAO Yijun, XING Baolin, LI Peng. Soluble conversion of Zhaotong lignite by ammonolysis and the occurrence forms of oxygen and nitrogen in soluble portion[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023088
Citation: REN Yuyao, ZHOU Guoli, LIU Haojie, TENG Daoguang, CAO Yijun, XING Baolin, LI Peng. Soluble conversion of Zhaotong lignite by ammonolysis and the occurrence forms of oxygen and nitrogen in soluble portion[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023088

昭通褐煤氨解可溶化转化及热溶物中氧和氮的赋存形态

doi: 10.19906/j.cnki.JFCT.2023088
基金项目: 国家重点研发计划(2021YFC2902604),国家自然科学基金面上项目(52174262),河南省省级科技研发计划联合基金(222301420036)和中国博士后科学基金(2022M712881)资助
详细信息
    通讯作者:

    Tel: 15378793659, Fax: 0371-67781801, E-mail: zdhglipeng@zzu.edu.cn

  • 中图分类号: TQ536

Soluble conversion of Zhaotong lignite by ammonolysis and the occurrence forms of oxygen and nitrogen in soluble portion

Funds: The project was supported by General Program of National key research and development program(2021YFC2902604),National Natural Science Foundation of China(52174262),Henan provincial science and technology research and development plan joint fund project(222301420036) and China Postdoctoral Science Foundation(2022M712881).
  • 摘要: 褐煤碳含量高且富含氧、氮等杂原子,是制备炭材料的重要原料。但由于褐煤可溶有机碳含量低,杂原子分配无规律,导致以褐煤为原料制备炭材料面临诸多挑战。因此,亟需实现褐煤的可溶化转化。本研究以氨水为溶剂,旨在温和条件下,同步实现昭通褐煤的可溶化和褐煤热溶物中氧和氮的调控。实验结果表明,在氨水浓度15%、温度160 ℃条件下反应3 h,热溶物收率最高为76.66%,昭通褐煤表现出良好的热溶效果。基于对热溶物的表征和分析,发现氨解在一定程度上改变了煤中的大分子结构,表现为氨基与羟基置换,或与部分羧基、羰基直接反应生成有机态氮。对比发现,原煤中氮元素赋存形态以季氮和吡咯氮为主,而可溶物中氮元素赋存形态以氨基氮和吡啶氮为主,表明褐煤氨解热溶过程产生了氨基或酰胺基。
  • 图  1  DZL在不同反应条件下热溶解聚的SPs收率

    Figure  1  SPs yields of DZL under different reaction conditions (a) ammonia concentration, (b) temperature, (c) time

    图  2  DZL和不同条件获得的SPs的FT-IR谱图

    Figure  2  FT-IR spectra of DZL and SPs under different conditions(a) ammonia concentration, (b) temperature, (c) time

    图  3  DZL与不同氨水浓度得到的SPv-160-3的(a)XPS全谱和(b)表面元素含量

    Figure  3  (a) XPS full spectra and (b) surface element content of DZL and SPv-160-3 with different ammonia concentration

    图  4  DZL与不同反应温度得到的SP15%-v-3的(a)XPS全谱和(b)表面元素含量

    Figure  4  (a) XPS full spectra and (b) surface element content of DZL and SP15%-v-3 with different reaction temperature

    图  5  DZL与不同反应时间得到的SP15%-160-v的(a)XPS全谱和(b)表面元素含量

    Figure  5  (a) XPS full spectra and (b) surface element content of DZL and SP15%-160-v with different reaction time

    图  6  DZL和不同氨水浓度得到的SPv-160-3的XPS谱图与拟合曲线

    Figure  6  XPS spectra and fitting curves of DZL and SPv-160-3 with different ammonia concentration

    图  7  XPS分析得到的DZL和SPv-160-3表面元素含量

    Figure  7  The contents of surface elements of DZL and SPv-160-3 by XPS analysis ((a) C 1s, (b) N 1s, (c) O 1s)

    图  8  DZL和不同反应温度得到的SP15%-v-3的XPS谱图与拟合曲线

    Figure  8  XPS spectra and fitting curves of DZL and SP15%-v-3 with different reaction temperature

    图  9  XPS分析得到的DZL和SP15%-v-3的表面元素含量

    Figure  9  The contents of surface elements of DZL and SP15%-v-3 by XPS analysis (a) C 1s, (b) N 1s, (c) O 1s

    图  10  DZL和不同反应时间得到的SP15%-160-v的XPS谱图与拟合曲线

    Figure  10  XPS spectra and fitting curves of DZL and SP15%-160-v with different reaction time

    图  11  XPS分析得到的DZL和SP15%-160-v的表面元素含量

    Figure  11  The contents of surface elements of DZL and SP15%-160-v by XPS analysis (a) C 1s, (b) N 1s, (c) O 1s

    表  1  ZL和DZL的工业分析、元素分析和原子比

    Table  1  Proximate analysis, elemental analysis and atomic ratio of ZL and DZL

    Sample Proximate analysis% Elemental analysis wdaf/% Atomic ratio
    Mad Ad Vdaf C H N S Odiff H/C N/C O/C
    ZL 10.29 14.69 61.29 53.86 5.50 1.55 0.81 38.28 0.10 0.03 0.71
    DZL 6.99 0.50 56.72 57.90 4.66 1.08 0.70 35.64 0.08 0.02 0.62
    下载: 导出CSV

    表  2  DZL和在不同条件下SPs的FT-IR谱图中各官能团归属

    Table  2  Functional groups attribution in FT-IR spectra of DZL and SPs under different conditions

    Wavenumber/cm−1 Functional groups
    3450−3420 O−H of the hydroxyl group
    3190−3160 N−H of the amine group
    2920,2850 C−H of methyl and methylene groups
    1710 C=O
    1610 C=C of the aromatic ring
    1450,1399 C−H of methyl and methylene groups
    1260,1036 C−O−C of the aromatic oxide
    下载: 导出CSV
  • [1] LI Z, WEI X, YAN H, et al. Advances in lignite extraction and conversion under mild conditions[J]. Energy Fuels,2015,29(11):6869−6886. doi: 10.1021/acs.energyfuels.5b01108
    [2] ZHANG Y, WEI X, LU J, et al. Characterization of nitrogen-containing aromatics in Baiyinhua lignite and its soluble portions from thermal dissolution[J]. Chin J Chem Eng,2019,27(11):2783−2787. doi: 10.1016/j.cjche.2019.06.001
    [3] WANG Y H, WEN J L, GUO L W, et al. Influence of oxygen-containing functional groups on carbon monoxide occurs in low rank coals[J]. 2012 Int Symp on Safety Sci Technol. 2012, 45: 967-972.
    [4] WANG L Y, XU Y L, JIANG S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety Sci,2012,50(7):1528−1534. doi: 10.1016/j.ssci.2012.03.006
    [5] LIU F, WEI X, FAN M, et al. Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review[J]. Appl Enegry,2016,170:415−436. doi: 10.1016/j.apenergy.2016.02.131
    [6] 罗培培, 傅雪海. 我国褐煤共伴生资源分析及利用方向[J]. 煤炭科学技术,2012,40(12):118−121.

    LUO Peipei, FU Xuehai. Analysis and utilization direction on associated resources of lignite in China[J]. Coal Sci Technol,2012,40(12):118−121.
    [7] 张明明. 褐煤热风流态化干燥分选一体化试验研究[D]. 徐州: 中国矿业大学, 2022.

    ZHANG Mingming. Integrated experiment of lignite hot-air fluidized drying and separating[D]. Xuzhou: China University of Mining and Technology, 2022.)
    [8] 郝建秀, 丁志伟, 刘倩, 等. 褐煤解聚产物利用及分离研究进展[J]. 煤炭学报,2022,47(04):1679−1691.

    HAO Jianxiu, DING Zhiwei, LIU Qian, et al. Research progress on utilization and separation of depolymerized products of lignite[J]. J China Coal Soc,2022,47(04):1679−1691.
    [9] 王铁民. 小龙潭褐煤的热溶解聚[D]. 徐州: 中国矿业大学, 2016.

    WANG Tiemin. Sequential thermal dissolution of Xiaolongtan lignite[D]. Xuzhou: China University of Mining and Technology, 2016.)
    [10] SHUI H, ZHOU Y, LI H, et al. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel,2013,108:385−390. doi: 10.1016/j.fuel.2012.11.005
    [11] 夏琴晔, 水恒福. 煤的热溶及其热溶物的应用研究[J]. 安徽工业大学学报(自然科学版),2021,38(2):152−160.

    XIA Qinye, SHUI Hengfu. A Study of thermal dissolution of coal and utilization of its soluble fraction[J]. J Anhui University Technol (Nat Sci),2021,38(2):152−160.
    [12] LI Z, WEI X, YAN H, et al. Characterization of soluble portions from thermal dissolution of Zhaotong lignite in cyclohexane and methanol[J]. Fuel Process Technol,2016,151:131−138. doi: 10.1016/j.fuproc.2016.05.029
    [13] LI S, ZONG Z, LIU J, et al. Changes in oxygen-functional moieties during sequential thermal dissolution and methanolysis of the extraction residue from Zhaotong lignite[J]. J Anal Appl Pyrolysis,2019,139:40−47. doi: 10.1016/j.jaap.2019.01.006
    [14] SHUI H F, HE F, WU Y, et al. Study on the use of the thermal dissolution soluble fraction from Shenfu sub-bituminous coal in coke-making coal blends[J]. Energy Fuels,2015,29(3):1558−1563. doi: 10.1021/ef502736a
    [15] 张永, 杨琪, 邵渊, 等. 煤基功能炭材料的合成及储能应用[J]. 煤炭学报,2023,48(9):3522−3541.

    ZHANG Yong, YANG Qi, SHAO Yuan, et al. Synthesis and application in energy storage of coal-based functional carbon materials[J]. J China Coal Soc,2023,48(9):3522−3541.
    [16] ASHIDA R, NAKGAWA K, OGA M, et al. Fractionation of coal by use of high temperature solvent extraction technique and characterization of the fractions[J]. Fuel,2008,87(4/5):576−582. doi: 10.1016/j.fuel.2007.02.035
    [17] 王知彩, 李良, 水恒福, 等. 先锋褐煤热溶及热溶物红外光谱表征[J]. 燃料化学学报,2011,39(6):401−406. doi: 10.1016/S1872-5813(11)60027-3

    WANG Zhicai, LI Liang, SHUI Hengfu, et al. High temperature thermal extraction of Xianfeng lignite and FT-IR characterization of its extracts and residues[J]. J Fuel Chem Technol,2011,39(6):401−406. doi: 10.1016/S1872-5813(11)60027-3
    [18] ZHANG Y, WEI X, LU J, et al. Identification of oxygen-containing aromatics in soluble portions from thermal dissolution and alkanolyses of Baiyinhua lignite[J]. Fuel Process Technol,2019,186:149−155. doi: 10.1016/j.fuproc.2018.12.021
    [19] GURUZ K. Oxy-ammoniation of Elbistan lignite to produce a nitrogenous fertilizer[J]. Fuel,1980,59:772−776. doi: 10.1016/0016-2361(80)90253-7
    [20] JOSE C, RICARDO A, ANTONIO B. Production of a nitrogenous humic fertilizer by the oxidation-ammoniation of lignite[J]. Ind Eng Chem Prod Res Dev,1984,23:620−624.
    [21] 张德和, 陈步时, 李允阁, 等. 腐植酸的氨化机理的研究[J]. 化学学报,1978,36(3):171−181.

    ZHANG Dehe, CHEN Bushi, LI Yunge, et al. A study of ammoniation mechanism of humic acid[J]. Acta Chim Sin,1978,36(3):171−181.
    [22] 晋云玲, 杨阿三, 孙勤, 等. 褐煤氧化氨解过程中腐植酸官能团含量的研究[J]. 高校化学工程学报,2010,24(03):446−450.

    JIN Yunling, YANG Asan, SUN Qin, et al. The Research on groups content of humic acid in brown coal during the ammoxidation process[J]. J Chem Eng Chin Univ,2010,24(03):446−450.
    [23] 吴成林, 吴雷, 胥玉玲, 等. 酸洗脱灰对JH煤物化性能的影响研究[J]. 燃料与化工,2020,51(5):7−10.

    WU Chenglin, WU Lei, XU Yuling, et al. Research of the influence of acid-cleaning and deashing on physicochemical properties of JH coal[J]. Fuel Chem Processes,2020,51(5):7−10.
    [24] 刘亚丽. Co基催化剂催化宁东褐煤及其模型化合物加氢转化[D]. 徐州: 中国矿业大学, 2021.

    LIU Yali. Catalytic hydroconversion of Ningdong lignite and coal model compounds over cobalt-based catalysts[D]. Xuzhou: China University of Mining and Technology. 2021.)
    [25] 韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FT-IR分析[J]. 煤炭学报,2014,39(11):2293−2299.

    HAN Feng, ZHANG Yanguo, MENG Aihongg, et al. FT-IR analysis of Yunnan lignite[J]. J China Coal Soc,2014,39(11):2293−2299.
    [26] 庞雁原, 杜铭华, 戴和武. 煤热解过程中酚类化合物生成机理及数学模型[J]. 煤炭转化,1995,(1):75−81.

    PANG Yanyuan, DU Minghua, DAI Hewu. Mechanism and mathematical model of phenolic compound formation during coal pyrolysis[J]. Coal Convers,1995,(1):75−81.
    [27] 曾凡虎. 酸洗脱灰对乌拉盖褐煤热解和酚类分布的影响[D]. 大连: 大连理工大学, 2012.

    ZENG Fanhu. Effect of acid-washing on Wulagai lignite pyrolysis and distribution of phenols[D]. Dalian: Dalian University of Technology, 2012)
    [28] 阚侃, 王珏, 付东, 等. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程,2022,50(2):94−102.

    KAN Kan, WANG Jue, FU Dong, et al. Construction and capacitive performance of N-doped carbon nanofiber coated graphene nanosheets[J]. J Mater Eng,2022,50(2):94−102.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-05
  • 录用日期:  2024-01-05
  • 网络出版日期:  2024-01-30

目录

    /

    返回文章
    返回