留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnCaZr固溶体催化异丁烷-CO2氧化脱氢制异丁烯的研究

刘玉鹏 刘玲技 蔚晓盛 王永钊 李国强 李磊 王长真

刘玉鹏, 刘玲技, 蔚晓盛, 王永钊, 李国强, 李磊, 王长真. ZnCaZr固溶体催化异丁烷-CO2氧化脱氢制异丁烯的研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024003
引用本文: 刘玉鹏, 刘玲技, 蔚晓盛, 王永钊, 李国强, 李磊, 王长真. ZnCaZr固溶体催化异丁烷-CO2氧化脱氢制异丁烯的研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024003
LIU Yupeng, LIU Lingji, YU Xiaosheng, WANG Yongzhao, LI Guoqiang, LI Lei, WANG Changzhen. CO2 Assistant Oxidative Dehydrogenation of Isobutane to Isobutene Catalyzed by ZnCaZr Solid Solution[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024003
Citation: LIU Yupeng, LIU Lingji, YU Xiaosheng, WANG Yongzhao, LI Guoqiang, LI Lei, WANG Changzhen. CO2 Assistant Oxidative Dehydrogenation of Isobutane to Isobutene Catalyzed by ZnCaZr Solid Solution[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024003

ZnCaZr固溶体催化异丁烷-CO2氧化脱氢制异丁烯的研究

doi: 10.19906/j.cnki.JFCT.2024003
基金项目: 国家自然科学基金 (22178202, 21603127), 山西省科技创新团队项目(202204051001012), 煤炭高效低碳利用全国重点实验室开放课题基金(J23-24-609-2), 天津市科技计划项目(22YFYSHZ00290)和中国科学院山西煤炭化学研究所自主创新项目(SCJC-DT-2023-03)资助
详细信息
    通讯作者:

    E-mail: lilei@sxicc.ac.cn

    czwang@sxu.edu.cn

  • #:共同第一作者
  • 中图分类号: O643.36

CO2 Assistant Oxidative Dehydrogenation of Isobutane to Isobutene Catalyzed by ZnCaZr Solid Solution

Funds: The project was supported by National Natural Science Foundation of China (22178202, 21603127), the Science and Technology Innovation Teams of Shanxi Province (202204051001012), the foundation of National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal (J23-24-609-2), the Science and Technology Plan Project of Tianjin (22YFYSHZ00290), independent innovation project of ICCCAS (SCJC-DT-2023-03).
  • 摘要: 本研究采用一锅式共沉淀法制备了xZn-CaZr固溶体催化剂并将其应用于CO2-BDH反应,通过多种手段探明该系列催化剂的理化性质并结合催化性能阐述其构效关系及表面氧化还原机制。研究表明,xZn-CaZr催化剂在Zn含量为6%−12%的情况下形成了Zn物种高度分散的固溶体结构,且氧缺陷的数量与Zn的含量几乎成正比。在xZn-CaZr催化剂上,晶格氧的数量和氧迁移率是决定催化性能的关键因素,其中,0.4Zn-CaZr催化剂展示出最佳的催化活性,而0.2Zn-CaZr催化剂展示出最佳的反应稳定性。该研究为进一步开发绿色高性能的CO2-BDH催化剂提供了参考价值。
    1)  #:共同第一作者
  • 图  1  新鲜催化剂的物理结构表征

    Figure  1  Physical structure of the fresh catalyst

    (a): N2 adsorption/desorption isotherms; (b): pore size distributions; (c): XRD patterns; (d): Raman patterns.

    图  2  xZn-CaZr催化剂的化学性质表征

    Figure  2  XPS spectra of the xZn-CaZr catalysts

    (a): Zn 2p3/2; (b):O 1s; (c): H2-TPR patterns; (d): the changing pattern of the relative content of Oβ and H2-TPR peak-1 temperature with the Zn content in xZn-CaZr.

    图  3  xZn-CaZr催化剂的(a)异丁烷转化率,(b)异丁烯选择性,(c) 异丁烯收率和(d) CO2转化率

    Figure  3  (a) Isobutane conversion, (b) isobutene selectivity, (c) isobutene yield, and (d) CO2 conversion of xZn-CaZr catalysts Reaction condition: C4H10∶CO2∶N2 = 1∶5∶4, 570 ℃, atmospheric pressure, GHSV = 6000 mL/(g·h)

    图  4  0.4Zn-CaZr催化剂在不同进气比条件下的CO2-BDH反应性能

    Figure  4  CO2-BDH reaction performance of 0.4Zn-CaZr catalyst under different feed ratiosReaction condition: C4H10∶CO2∶N2 = 3∶0:27、3∶3:24、3∶9∶18、3∶15∶12, 570 ℃, atmospheric pressure, GHSV = 6000 mL/(g·h)

    (a): Isobutane conversion; (b): isobutene selectivity; (c): isobutene yield; (d): Comparison of activity and selectivity at 1 h and 7 h.

    图  5  反应后催化剂的表面氧缺陷及积炭信息分析

    Figure  5  Analysis of surface relative content of Oβ and carbon deposits of the used catalysts

    (a): O 1s spectra of XPS; (b): TG; (c): Raman spectra; (d): C 1s spectra of XPS.

    图  6  (a)反应前后催化剂的表面Oβ相对含量及异丁烷转化率损失量; (b) 催化剂的表面Oβ相对含量与积炭速率的关系; H2-TPR中的1类还原峰值温度与催化剂的异丁烷起始转化速率(c)及积炭速率(d)的关系

    Figure  6  (a) The relative content of Oβ and the loss of isobutane conversion before and after reaction; (b) the relationship between the relative content of Oβ on the catalyst surface and the coking rate. The relationship between the reduction temperature of peak-1 in H2-TPR and (c) the initial isobutane conversion, (d) coking rate of the catalysts

    图  7  xZn-CaZr固溶体催化剂表面可能的氧化还原机制

    Figure  7  Possible redox mechanism on the surface of xZn-CaZr solid solution catalysts

    表  1  xZn-CaZr催化剂的元素含量及织构参数

    Table  1  Elemental content and texture parameters of xZnO-CaZr catalyst

    Catalyst Zn loading/% Ca loading/% Zr loading/% A/(m2 g−1) vp/(cm3 g−1) dp/nm ZrO2 crystal size/nm
    CaZr 4.6 52.3 210.7 0.75 5.4 15
    0.2Zn-CaZr 6.6 4.2 49.0 159.4 0.43 7.4 19
    0.4Zn-CaZr 11.4 3.8 46.9 135.8 0.41 8.8 30
    0.6Zn-CaZr 15.9 3.1 40.5 76.9 0.46 8.0 36
    下载: 导出CSV

    表  2  催化剂的表面Oβ相对含量和H2-TPR峰值温度

    Table  2  Surface relative content of Oβ and H2-TPR Peak temperature on the fresh catalysts

    Catalyst Relative content of Oβ /% H2-TPR peak temperature/℃
    1 2 3
    CaZr 20.2 584 738
    0.2Zn-CaZr 22.1 589 729 824
    0.4Zn-CaZr 27.2 575 602 663
    0.6Zn-CaZr 25.6 578 708
    下载: 导出CSV

    表  3  反应1h时的异丁烷和CO2转化率、主要烃类产物选择性及异丁烯产率

    Table  3  Conversion of isobutane and CO2, selectivity of main hydrocarbon products and isobutene yield at 1h reaction

    Catalyst Conversion/% Selectivity/% i-C4H8 yield/%
    i-C4H10 CO2 i-C4H8 C3H8 C3H6 C2H6 C2H4 CH4
    CaZr 3.0 1.5 91.3 2.3 1.8 0.9 0.8 2.9 2.7
    0.2Zn-CaZr 18.2 5.7 89.5 2.8 2.1 1.3 1.3 3.0 16.2
    0.4Zn-CaZr 53.8 13.6 85.5 3.1 2.7 1.9 1.6 5.2 45.9
    0.6Zn-CaZr 50.6 12.4 84.2 3.0 2.9 1.8 1.8 6.3 42.6
    下载: 导出CSV

    表  4  反应后催化剂的XPS分析、表面碳信息及积炭速率

    Table  4  Surface relative content of Oβ, carbon information and coking rate of used catalysts

    Catalyst Relative content of Oβ/% Coke content/% ID/IG C/C Coking rate/(mg·mol−1)
    CaZr 19.6
    0.2Zn-CaZr 20.8 0.8 1.75 1.42 5.01
    0.4Zn-CaZr 23.7 0.9 1.91 1.51 1.91
    0.6Zn-CaZr 21.2 1.6 1.64 1.20 3.87
    下载: 导出CSV
  • [1] LIU J, ZHOU W, JIANG D, et al. Insights into the doping effect of rare-earth metal on ZnAl2O4 supported PtSn catalyzed isobutane dehydrogenation[J]. Catal Today,2021,368:58−65. doi: 10.1016/j.cattod.2020.04.016
    [2] WANG J, LIU M, LI J, et al. Elucidating the active-phase evolution of Fe-based catalysts during isobutane dehydrogenation with and without CO2 in feed gas[J]. ACS Catal,2022,12(10):5930−5938. doi: 10.1021/acscatal.1c05907
    [3] OTROSHCHENKO T, JIANG G Y, KONDRATENKO V A, et al. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts[J]. Chem Soc Rev,2021,50(1):473−527. doi: 10.1039/D0CS01140A
    [4] OTROSHCHENKO T, SOKILOV S, STOYANOVA M, et al. ZrO2‐based alternatives to conventional propane dehydrogenation catalysts: active sites, design, and performance[J]. Angew Chem Int Edit,2015,54(52):15880−15883. doi: 10.1002/anie.201508731
    [5] LIU Y, XIA C, WANG Q, et al. Direct dehydrogenation of isobutane to isobutene over Zn-doped ZrO2 metal oxide heterogeneous catalysts[J]. Catal Sci Technol,2018,8(19):4916−4924. doi: 10.1039/C8CY01420E
    [6] GAO Y G, JIE X Y, WANG C Z, et al. One-pot synthesis of ca oxide-promoted Cr catalysts for the dehydrogenation of propane using CO2[J]. Ind Eng Chem Res,2020,59(28):12645−12656. doi: 10.1021/acs.iecr.9b06703
    [7] ZHANG Y, ZHAO Y, OTROSHCHENKO T, et al. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C-H bond activation[J]. Nat Commun,2018,9(1):3794. doi: 10.1038/s41467-018-06174-5
    [8] WELLER M, Oxygen mobility in yttria-doped zirconia studied by internal friction, electrical conductivity and tracer diffusion experiments[J]. Solid State Ionics, 2004, 175(1-4): 409-413.
    [9] OTROSHCHENKO T, KONDRATENKO V A, RODEMERCK U, et al. ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: Factors determining catalytic activity[J]. J Catal,2017,348:282−290. doi: 10.1016/j.jcat.2017.02.016
    [10] LIAO D, YANG L, SONG G, et al. CO2-assisted oxidative dehydrogenation of ethane to ethylene over the ZnO-ZrO2 catalyst[J]. J Fuel Chem Technol,2023,51(10):1421−1431. doi: 10.1016/S1872-5813(23)60360-3
    [11] YANG G Q, HE Y J, SONG Y H, et al. Oxidative dehydrogenation of propane with carbon dioxide catalyzed by Zn xZr1– xO2– x solid solutions[J]. Ind Eng Chem Res,2021,60(49):17850−17861. doi: 10.1021/acs.iecr.1c03476
    [12] WANG C Z, SUN N N, ZHAO N, et al. Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane[J]. Catal Today,2017,281:268−275. doi: 10.1016/j.cattod.2016.03.026
    [13] WANG C Z, SUN N N, ZHAO N. et al. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions[J]. Fuel,2015,143:527−535. doi: 10.1016/j.fuel.2014.11.097
    [14] WANG C Z, SUN N N, WEI W, et al. Carbon intermediates during CO2 reforming of methane over NiCaOZrO2 catalysts: A temperature-programmed surface reaction study[J]. Int J Hydrogen Energ,2016,41(42):19014−19024. doi: 10.1016/j.ijhydene.2016.08.128
    [15] SUN J, BAYLON R A L, LIU C, et al. Key roles of lewis acid-base pairs on Zn xZr yOz in direct ethanol/acetone to isobutene conversion[J]. J Am Chem Soc,2015,138(2):507−517.
    [16] WANG C Z, SUN N N, KANG M, et al. The bi-functional mechanism of CH4 dry reforming over a Ni-CaO-ZrO2 catalyst: further evidence via the identification of the active sites and kinetic studies[J]. Catal Sci Technol,2013,3(9):2435−2443. doi: 10.1039/c3cy00153a
    [17] LUO Y J, WeEI C L, MIAO C X, et al. Isobutane dehydrogenation assisted by CO2 over silicalite-1-supported ZnO catalysts: Influence of support crystallite size[J]. Chinese J Chem,2020,38(7):703−708. doi: 10.1002/cjoc.202000042
    [18] DENG Q, DUAN X, NG D H L, et al. Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities[J]. ACS Appl Mater Inter,2012,4(11):6030−6037. doi: 10.1021/am301682g
    [19] BAYLON R A L, SUN J, KOVARIK L, et al. Structural identification of Zn xZr yOz catalysts for Cascade aldolization and self-deoxygenation reactions[J]. Appl Catal B-Environ,2018,234:337−346. doi: 10.1016/j.apcatb.2018.04.051
    [20] 杨淑倩, 贺建平, 张娜, 等. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46(2):179−188. doi: 10.1016/S1872-5813(18)30010-0

    YANG Shuqian, HE Jianping, ZHANG Na, et al. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol,2018,46(2):179−188. doi: 10.1016/S1872-5813(18)30010-0
    [21] GAO P, DANG S, LI S, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2017,8(1):571−578.
    [22] WANG Y, ZHAN W, CHEN Z, et al. Advanced 3D hollow-out ZnZrO@C combined with hierarchical Zeolite for highly active and selective CO hydrogenation to aromatics[J]. ACS Catal,2020,10(13):7177−7187. doi: 10.1021/acscatal.0c01418
    [23] ZHENG Y, LI J, ZHANG X, et al. Effect of CO2 co-feeding on the stabilization of atomically dispersed iron species over MgAl2O4 during ethane dehydrogenation reactions[J]. ACS Catal,2023,13(16):11153−11163. doi: 10.1021/acscatal.3c02029
    [24] WANG Y, CHEN Y, ZHANG J, et al. High transformation of propane in reaction with CO2 to propylene on ZrO2-combined Fe-based catalysts[J]. Catal Sci Technol,2023,13(19):5734−5744. doi: 10.1039/D3CY00915G
    [25] SILVA-CALPA L D R, ZONETTI P C, RODRIGUES C P, et al. The Zn xZr1- xO2- y solid solution on m-ZrO2: Creating O vacancies and improving the m-ZrO2 redox properties[J]. J Mol Catal A-Chem,2016,425:166−173. doi: 10.1016/j.molcata.2016.10.008
    [26] ATANGA M A, REZAEI F, JAWAD A, et al. Oxidative dehydrogenation of propane to propylene with carbon dioxide[J]. Appl Catal B-Environ,2018,220:429−445. doi: 10.1016/j.apcatb.2017.08.052
    [27] XIE Z, REN Y, LI J, et al. Facile in situ synthesis of highly dispersed chromium oxide incorporated into mesoporous ZrO2 for the dehydrogenation of propane with CO2[J]. J Catal,2019,372:206−216. doi: 10.1016/j.jcat.2019.02.026
    [28] WANG J, SONG Y H, LIU Z T, et al. Active and selective nature of supported CrO x for the oxidative dehydrogenation of propane with carbon dioxide[J]. Appl Catal B-Environ,2021,297:120400. doi: 10.1016/j.apcatb.2021.120400
    [29] AL-AWADI A S, EL-TONI A M, LABIS J P, et al. Mesoporous organo-silica supported chromium oxide catalyst for oxidative dehydrogenation of ethane to ethylene with CO2[J]. Catalysts,2021,11(5):642. doi: 10.3390/catal11050642
    [30] 吴昊, 王长真, 仇媛, 等. Ni-SiO2催化剂空间限域维度对CH4-CO2重整反应金属抗积炭能力的影响[J]. 高等学校化学学报, 2020, 41(11: 210-217.

    WU Hao, WANG Changzhen, QIU Yuan, et al. Effect of steric confinement dimension on metal site anti-carbon deposition ability of Ni-SiO2 catalysts in CH4-CO2 reforming[J]. Chem J Chinese U, 2020, 41(11: 210-217.)
    [31] ZHANG Y, ZHANG G, LIU J, et al. Dry reforming of methane over Ni/SiO2 catalysts: Role of support structure properties[J]. Fuel,2023,340:127490. doi: 10.1016/j.fuel.2023.127490
    [32] YANG Z, LI H, Zhou H, et al. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation[J]. J Am Chem Soc,2020,142(38):16429−16436. doi: 10.1021/jacs.0c07792
    [33] LU Y, KANG L, GUO D, et al. Double-site doping of a V promoter on Ni x-V-MgAl catalysts for the DRM reaction: simultaneous effect on CH4 and CO2 activation[J]. ACS Catal,2021,11(14):8749−8765. doi: 10.1021/acscatal.1c01299
    [34] BAHARI M B, SETIABUDI H D, TRINH D N, et al. Insight into the influence of rare-earth promoter (CeO2, La2O3, Y2O3, and Sm2O3) addition toward methane dry reforming over Co/mesoporous alumina catalysts[J]. Chem Eng Sci, 2020, 228.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  47
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-06
  • 修回日期:  2024-02-11
  • 录用日期:  2024-02-27
  • 网络出版日期:  2024-03-13

目录

    /

    返回文章
    返回