留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论的HCN与H2/H2O气相反应机理研究

孙明哲 许建良 侯秋实 代正华 王辅臣

孙明哲, 许建良, 侯秋实, 代正华, 王辅臣. 基于密度泛函理论的HCN与H2/H2O气相反应机理研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024004
引用本文: 孙明哲, 许建良, 侯秋实, 代正华, 王辅臣. 基于密度泛函理论的HCN与H2/H2O气相反应机理研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024004
SUN Mingzhe, XU Jianliang, HOU Qiushi, DAI Zhenghua, WANG Fuchen. Study on gas phase reaction mechanism of HCN and H2/H2O based on density functional theory[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024004
Citation: SUN Mingzhe, XU Jianliang, HOU Qiushi, DAI Zhenghua, WANG Fuchen. Study on gas phase reaction mechanism of HCN and H2/H2O based on density functional theory[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024004

基于密度泛函理论的HCN与H2/H2O气相反应机理研究

doi: 10.19906/j.cnki.JFCT.2024004
基金项目: 国家重点研发计划(2022YFB4101500),新疆自治区自然科学基金重点项目(2023D01D02)和上海市2021年科技创新行动计划课题(21DZ1209003)资助
详细信息
    通讯作者:

    Tel:+86 13817562292,E-mail:chinadai@ecust.edu.cn

  • 中图分类号: O643

Study on gas phase reaction mechanism of HCN and H2/H2O based on density functional theory

Funds: The project was supported by the National Key Research and Development Program of China ( 2022YFB4101500), Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (2023D01D02), and Shanghai 2021 Science and Technology Innovation Action Plan Project (21DZ1209003).
  • 摘要: 含HCN的废弃物在气化炉内的高温转化是其绿色处理的方法之一,其中,HCN与H2/H2O的反应是其在气化炉内的主要转化过程。本工作基于密度泛函理论,采用Gaussian及其配套软件对HCN与H2/H2O的反应机理进行了研究。通过分子成键、断键角度提出HCN与H2/H2O的各两种反应路径,结合能垒和热力学分析确定了相对最优路径,并计算了相对最优反应路径的速率常数。结果表明,HCN与H2反应相对最优路径为:三个H2分子在C≡N上分三步进行加成得到产物CH4+NH3;HCN与H2O反应相对最优路径为:H2O分子进攻C原子,O原子和C原子的H先后转移至N原子得到产物CO+NH3。两条相对最优路径在1473 K以上有明显反应速率,分别为9.57×10−4 mol/(L·s)和1.71 mol/(L·s)。研究结果为高温下HCN与H2/H2O反应的工艺和设备开发提供了理论数据支撑。
  • 图  1  HCN与H2反应路径示意图

    Figure  1  Reaction Paths of HCN and H2

    图  2  HCN与H2反应过程中的Mayer键级-键长曲线图(a)−(e)及不同路径的势能图(f)

    Figure  2  Mayer Bond order-bond length curve during the reaction between HCN and H2 (a)−(e) and potential energy graphs for different pathways (f)

    图  3  HCN与H2O反应路径示意图

    Figure  3  Reaction Paths of HCN and H2O

    图  4  HCN与H2O反应过程中的Mayer键级-键长曲线图(a)−(e)及不同路径的势能图(f)

    Figure  4  Mayer Bond order-bond length curve during the reaction between HCN and H2O (a)−(e) and potential energy graphs for different pathways (f)

    图  5  HCN与H2、H2O的各步反应的吉布斯自由能变△G随温度的变化

    Figure  5  △G of HCN with H2 and H2O at different reaction steps as a function of temperature

    图  6  HCN与H2/H2O总反应在常压与7 MPa下的自由能随温度的变化

    Figure  6  Temperature dependent free energy of the total reaction between HCN and H2/H2O at atmospheric pressure and 7 MPa

    表  1  HCN与H2反应过程中优化后分子的Fukui函数等值面及各原子位点亲电反应CFF值

    Table  1  Optimized Fukui function isosurfaces of molecules and CFF values of electrophilic reactions at various atomic sites during the HCN and H2 reaction process

    Species & Fukui function isosurface Atomic number $ {f}_{A}^{-} $
    HCN HCN-H
    HCN-C
    HCN-N
    0.02536
    0.38361
    0.59106
    IM1 IM1-C1
    IM1-H2
    IM1-N3
    IM1-H4
    IM1-H5
    0.15909
    0.05071
    0.63940
    0.07323
    0.07745
    IM2 IM2-C1
    IM2-H2
    IM2-N3
    IM2-H4
    IM2-H5
    IM2-H6
    IM2-H7
    0.10057
    0.01700
    0.68701
    0.05376
    0.01703
    0.05376
    0.07087
    IM3 IM3-C1
    IM3-H2
    IM3-N3
    IM3-H4
    IM3-H5
    0.75997
    0.08608
    0.08908
    0.04195
    0.02294
    :C :N :H IM: intermediate.
    下载: 导出CSV

    表  2  HCN与H2反应路径中的反应物、重要的过渡态、中间体和产物的优化几何结构

    Table  2  Optimized geometric structures of reactants, important transition states, intermediates, and products in the reaction pathway between HCN and H2

    Specie Structure parameter
    Bond length/Å Bond angle/(°) Dihedral angel/(°)
    H2 R(1,2) 0.7442
    HCN R(2,1) 1.0668
    R(1,3) 1.1491
    A(2,1,3) 180.0000
    TS1 R(1,3) 1.0928
    R(1,5) 1.5135
    R(3,4) 1.3986
    R(5,4) 1.1139
    R(1,2) 1.0928
    A(2,1,3) 144.6852
    A(3,1,5) 116.0948
    A(4,3,1) 55.5995
    A(1,5,4) 53.2891
    D(1,3,4,5) 0.0005
    D(2,1,5,4) 179.9998
    IM1 R(1,3) 1.2658
    R(1,5) 1.0972
    R(3,4) 1.0273
    R(1,2) 1.0921
    A(2,1,5) 115.9175
    A(2,1,3) 118.7672
    A(4,3,1) 110.5457
    D(5,1,3,4) 0.0001
    D(2,1,3,4) -180.0012
    TS2 R(1,7) 1.5447
    R(3,6) 1.4571
    R(1,3) 1.3869
    R(7,6) 1.0871
    A(5,1,3) 123.5767
    A(7,1,3) 110.5757
    A(6,3,1) 52.7742
    A(7,6,3) 142.4171
    D(7,1,3,6) -1.4737
    D(7,1,3,4) 88.6393
    D(2,1,3,4) -168.0049
    D(6,3,1,5) -110.7991
    IM2 R(1,7) 1.1015
    R(3,6) 1.0150
    R(1,3) 1.4661
    R(3,4) 1.0150
    A(7,1,3) 115.5229
    A(4,3,6) 106.2779
    A(5,1,3) 109.2559
    A(4,3,1) 110.0534
    D(7,1,3,6) -58.4100
    D(7,1,3,4) 58.3957
    D(2,1,3,4) -179.9826
    D(6,3,1,5) 179.9200
    TS3 R(1,9) 2.0063
    R(3,8) 1.0370
    R(1,3) 2.0039
    R(1,5) 1.0886
    R(3,6) 1.0275
    A(9,1,3) 68.9162
    A(8,3,1) 89.2010
    A(9,8,3) 120.3781
    A(7,1,5) 113.7174
    A(8,3,4) 107.7419
    D(9,1,3,8) 14.9600
    D(9,1,3,6) 138.9165
    D(8,3,1,7) -53.7533
    D(7,1,3,6) 69.3032
    D(5,1,3,4) 84.2266
    TS4 R(1,2) 1.1021
    R(1,3) 1.3035
    R(3,4) 1.2204
    R(3,5) 1.2196
    R(4,5) 1.0095
    A(2,1,3) 117.8227
    A(1,3,4) 109.7895
    A(1,3,5) 109.8708
    A(4,3,5) 48.8790
    D(2,1,3,4) -21.0180
    D(2,1,3,5) 26.1657
    IM3 R(1,2) 1.1101
    R(1,3) 1.3109
    R(3,4) 1.0224
    R(3,5) 1.0137
    A(2,1,3) 105.8954
    A(1.3,4) 126.8288
    A(1,3,5) 119.4255
    A(4,3,5) 110.3356
    D(2,1,3,4) -0.0485
    D(2,1,3,5) -179.9298
    TS5 R(1,6) 1.2521
    R(1,7) 1.8189
    R(6,7) 0.9709
    R(1,3) 1.3417
    A(6,1,7) 30.2755
    A(6,1,3) 120.3818
    A(7,1,3) 110.7730
    A(5,3,4) 115.1700
    D(6,1,3,4) -110.0514
    D(7,1,3,5) 87.9517
    D(2,1,3,5) -176.3768
    D(2,1,3,4) 17.5926
    P1 R(1,7) 1.0919
    R(3,4) 1.0150
    A(4,3,6) 107.2535
    A(2,1,5) 109.0833
    下载: 导出CSV

    表  3  HCN与H2O反应过程中优化后分子的Fukui函数等值面及各原子位点亲电反应CFF值

    Table  3  Optimized Fukui function isosurfaces of molecules and CFF values of electrophilic reactions at various atomic sites during the HCN and H2O reaction process

    Species & Fukui function isosurface Atomic number $ {f}_{A}^{-} $
    HCN HCN-H
    HCN-C
    HCN-N
    0.02536
    0.38361
    0.59106
    IM5 IM5-O1
    IM5-H2
    IM5-H3
    IM5-C4
    IM5-H5
    IM5-N6
    0.18270
    0.05485
    0.01658
    0.14178
    0..02315
    0..58080
    IM6 IM6-O1
    IM6-H2
    IM6-H3
    IM6-C4
    IM6-H5
    IM6-N6
    0.57988
    0.02032
    0.02041
    0.10906
    0.05605
    0.21426
    IM7 IM7-O1
    IM7-H2
    IM7-H3
    IM7-C4
    IM7-H5
    IM7-N6
    0.15798
    0.03530
    0.02008
    0.66425
    0.01201
    0.11044
    :O :C :N :H IM: intermediate.
    下载: 导出CSV

    表  4  HCN与H2O反应路径中的反应物、重要的过渡态、中间体和产物的优化几何结构

    Table  4  Optimized geometric structures of reactants, important transition states, intermediates, and products in the reaction pathway between HCN and H2O

    Specie Structure parameter
    Bond length/Å Bond angle/(°) Dihedral angel/(°)
    >H2O R(1,2) 0.9619
    R(1,3) 0.9619
    A(2,1,3) 105.0645
    HCN R(2,1) 1.0668
    R(1,3) 1.1491
    A(2,1,3) 180.0000
    TS8 R(4,1) 1.7315
    R(5,2) 1.3527
    R(1,2) 1.2767
    R(4,6) 1.2022
    A(5,4,6) 149.9711
    A(3,1,2) 113.1294
    A(5,4,1) 108.3661
    A(4,6,2) 75.8243
    D(3,1,4,6) 106.5879
    D(5,4,1,2) 178.6648
    D(1,4,6,2) -1.4199
    IM5 R(3,1) 0.9638
    R(1,4) 1.3656
    R(4,6) 1.2569
    R(6,2) 1.0226
    R(5,4) 1.0910
    A(3,1,4) 110.2408
    A(5,4,6) 120.5837
    A(4,6,2) 111.2873
    A(1,4,6) 124.5519
    D(3,1,4,6) -179.9530
    D(5,4,6,2) 179.9971
    D(3,1,4,5) 0.0067
    D(1,4,6,2) -0.0454
    TS9 R(3,6) 1.3419
    R(1,4) 1.2799
    R(6,4) 1.3009
    R(1,3) 1.3343
    A(1,4,5) 122.7112
    A(1,4,6) 108.9032
    A(3,6,2) 161.0386
    A(3,6,4) 73.4046
    A(2,6,4) 125.5567
    D(5,4,6,3) -179.9966
    D(2,6,4,1) 179.9304
    D(3,1,4,6) 0.0146
    IM6 R(3,6) 1.0084
    R(1,4) 1.2094
    R(6,4) 1.3608
    R(2,6) 1.0058
    R(4,5) 1.1078
    A(1,4,6) 125.0723
    A(5,4,6) 111.9086
    A(2,6,3) 119.3349
    A(3,6,4) 119.0869
    D(5,4,6,2) 0.0109
    D(1,4,6,3) -0.0085
    TS10 R(4,6) 1.8572
    R(1,4) 1.1567
    R(5,6) 1.4147
    R(2,6) 1.0179
    R(3,6) 1.0188
    A(1,4,6) 122.1969
    A(4,6,3) 123.6470
    A(2,6,3) 111.6923
    A(5,6,2) 110.1399
    A(5,6,3) 136.9573
    D(2,6,4,1) -110.6570
    D(5,4,6,3) -124.9287
    D(1,4,6,3) 31.9173
    D(2,6,4,5) 92.4970
    P4 R(1,4) 1.1278
    R(6,5) 1.0151
    R(6,3) 1.0154
    R(6,2) 1.0154
    A(5,6,3) 107.0866
    A(5,6,2) 106.8252
    A(2,6,3) 107.0106
    TS11 R(3,1) 0.9637
    R(4,6) 1.3231
    R(4,1) 1.3483
    R(6,2) 1.0402
    R(6,5) 1.2844
    A(3,1,4) 107.9583
    A(1,4,6) 115.9444
    A(5,6,2) 131.5169
    A(4,6,2) 113.6095
    A(5,6,4) 58.3649
    D(3,1,4,6) 179.9985
    D(3,1,4,5) -108.0773
    D(2,6,4,1) 5.83156
    D(2,6,4,5) -125.4769
    IM7 R(5,6) 1.0052
    R(2,6) 1.0197
    R(6,4) 1.3276
    R(4,1) 1.3535
    R(1,3) 0.9602
    A(5,6,2) 118.1916
    A(5,6,4) 119.0565
    A(2,6,4) 122.7519
    A(6,4,1) 107.0787
    A(4,1,3) 106.4910
    D(6,4,1,3) 179.9516
    D(5,6,4,1) 179.9516
    D(2,6,4,1) -0.0131
    TS12 R(1,4) 1.2555
    R(4,6) 1.6007
    R(6,3) 1.3443
    R(6,5) 1.0205
    R(6,2) 1.0205
    A(1,4,6) 94.9820
    A(3,6,4) 69.2820
    A(4,6,5) 112.7127
    A(2,6,5) 108.0600
    A(2,6,3) 123.4042
    D(2,6,3,1) -104.1762
    D(5,6,4,1) -118.6872
    D(1,3,6,4) 0.0111
    下载: 导出CSV

    表  5  HCN与H2/H2O热力学可行反应的焓变△H

    Table  5  △H of thermodynamically feasible reactions between HCN and H2/H2O

    Reaction △H/(kJ·mol−1) T/K
    R1→IM1 −57.83→−68.03→−65.18 298→1198→1998
    IM1→IM2 −136.31→−141.34→−135.06 298→948→1998
    IM2→P1 −84→−72.93 298→1998
    HCN+3H2→CH4+NH3 −278.15→−290.05→−273.18 298→948→1998
    R2→IM5 −766.76→−769.23→−756 298→598→1998
    IM5→IM6 −69.16→−68.94→−69.36 298→548→1998
    IM6→P2 52.29→54.08→44.51 298→598→1998
    HCN+H2O→NH3+CO −783.63→−784.19→−780.86 298→748→1998
    下载: 导出CSV

    表  6  HCN与H2/H2O热力学可行反应的熵变△S

    Table  6  △S of thermodynamically feasible reactions between HCN and H2/H2O

    Reaction △S/(J·mol−1·k−1) T/K
    R1→IM1 −104.37→−124.84→123.16 298→1198→1998
    IM1→IM2 −117.06→−128.18→124.18 298→948→1998
    IM2→P1 −19.06→−8.06 298→1998
    HCN+3H2→CH4+NH3 −240.49→−266.16→−255.4 298→948→1998
    R2→IM5 −136.74→−143.44→−133.73 298→648→1998
    IM5→IM6 4.84→5.49→5.05 298→548→1998
    IM6→P2 52.47→57.25→49.9 298→598→1998
    HCN+H2O→NH3+CO −79.42→−80.94→−78.78 298→748→1998
    下载: 导出CSV

    表  7  HCN与H2/H2O各步反应速率常数

    Table  7  Reaction rate constant of HCN and H2/H2O in Each Step

    Reaction k/(s−1·M−1)
    298 K 673 K 1073 K 1473 K 1873 K
    R(HCN+3H2)→IM1 1.03×10−53 6.05×10−19 1.42×10−8 9.57×10−4 6.45×10−1
    IM1→IM2 4.31×10−48 4.93×10−17 1.02×10−7 2.37×10−3 8.89×10−1
    IM2→P1 4.08×10−56 9.26×10−20 9.38×10−9 1.32×10−3 1.37
    R(HCN+H2O)→IM5 6.67×10−34 7.17×10−11 7.06×10−4 1.71 1.70×102
    IM5→IM6 1.45×10−11 2.77×102 2.60×106 1.82×108 2.16×109
    IM6→P4 3.24×10−44 4.24×10−12 1.90×10−2 5.40×102 2.00×105
    下载: 导出CSV

    表  8  HCN与H2/H2O各步反应的两参数阿伦尼乌斯方程

    Table  8  The two parameter Arrhenius Equation for the reaction of HCN with H2/H2O in each step

    Reaction A/s−1 Ea /( kJ·mol−1) Arrhenius equation R2
    R(HCN+3H2)→IM1 4.45×109 357.62 k=4.46×109 e−43 011.61/T 0.99997
    IM1→IM2 5.09×108 320.28 k=5.09×108 e−38 520.66/T 0.99994
    IM2→P1 2.48×1010 375.89 k=2.48×1010 e−45 208.97/T 0.99991
    R(HCN+H2O)→IM5 4.68×108 239.30 k=4.68×108 e−28781.05/T 0.99977
    IM5→IM6 1.25×1013 136.68 k=1.25×1013 e−16679.3/T 0.99997
    IM6→P4 2.67×1014 330.70 k=2.67×1014 e−39773.89/T 0.99997
    下载: 导出CSV
  • [1] AXEL S, JONAS S. Main group cyanides: from hydrogen cyanide to cyanido-complexes.[J]. Rev. Inorg. Chem,2023,43:49−188. doi: 10.1515/revic-2021-0044
    [2] GB 16297-1996, 大气污染物综合排放标准[S].

    GB 16297-1996, Comprehensive Emission Standards for Air Pollutants[S])
    [3] GB 31571-2015, 石油化学工业污染物排放标准[S].

    GB 31571-2015, Emission Standards for Pollutants in the Petrochemical Industry[S])
    [4] 伊志豪, 孙杰, 李吉刚, 等. 气相中氰化氢消除研究进展[J]. 精细化工,2021,38(1):62−70.

    Yi Zhihao, Sun Jie, Li Jigang, et al. Research progress on the elimination of hydrogen cyanide in gas phase[J]. Fine Chem,2021,38(1):62−70
    [5] 陈平平, 胡德豪. 重油气化装置含氰废水处理技术对比[J]. 石油炼制与化工,2020,51(8):98−103.

    Chen Pingping, Hu Dehao. Comparison of treatment technologies for cyanide containing wastewater from heavy oil gasification plants[J]. Petroleum Refining and Chemical Industry,2020,51(8):98−103
    [6] 张奉民, 李开喜, 吕春祥, 等. 氰化氢脱除方法[J]. 新型炭材料,2003,02:151−157. doi: 10.3321/j.issn:1007-8827.2003.02.014

    Zhang Fengmin, Li Kaixi, Lv Chunxiang, et al. Hydrogen cyanide removal method[J]. New Carbon Mater,2003,02:151−157 doi: 10.3321/j.issn:1007-8827.2003.02.014
    [7] OLIVER T, JUGOSLAV K, ALEKSANDAR P, et al. Synthetic activated carbons for the removal of hydrogen cyanide from air[J]. Chem. Eng. Process,2005,44(11):1181−1187. doi: 10.1016/j.cep.2005.03.003
    [8] TAN H, WANG X, WANG C, et al. Characteristics of HCN removal using CaO at high temperatures[J]. Energy Fuels,2009,23(2):1545−1550.
    [9] PATERSON N, ZHOU Y, DUGWELL D, et al. Formation of hydrogen cyanide and ammonia during the gasification of sewage sludge and bituminous coal[J]. Energy Fuels,2005,19(3):1016−1022. doi: 10.1021/ef049688h
    [10] SCHAFER S, BONN B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidized combus-tion. Part 1. Homogeneous reactions[J]. Fuel,2000,79(10):1239−1246. doi: 10.1016/S0016-2361(99)00254-9
    [11] FRIEBEL R F W K. The fate of nitrogen during pyrolysis of German low rank coals-a parameter study[J]. Fuel,1999,78(8):923−932. doi: 10.1016/S0016-2361(99)00008-3
    [12] 彭国建, 杨蒙, 王国微, 等. HCN消除反应机理的理论研究[J]. 分子催化,2022,36(5):446−455.

    Peng Guojian, Yang Meng, Wang Guowei, et al. Theoretical study on the mechanism of HCN elimination reaction[J]. J. Mol. Catal. (China),2022,36(5):446−455
    [13] 侯封校, 金晶, 王永贞, 等. 污泥热解中HCN与CaO的反应机理: 密度泛函理论研究[J]. 燃料化学学报,2017,45(1):123−128.

    Hou Fengxiao, Jin Jing, Wang Yongzhen, et al. Reaction mechanism of HCN and CaO in sludge pyrolysis: density functional theory study[J]. J. Fuel Chem. Technol,2017,45(1):123−128
    [14] DARLA N, SHARMA D, Sitha S. Formation of formamide from HCN+H2O: A computational study on the roles of a second H2O as a catalyst, as a spectator, and as a reactant[J]. J. Phys. Chem. A,2020,124(1):165−175 doi: 10.1021/acs.jpca.9b09924
    [15] 付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报,2014,30(4):628−639. doi: 10.3866/PKU.WHXB201401211

    Fu Rong, Lu Tian, Chen Feiwu. Comparison of active site prediction methods in electrophilic substitution reactions[J]. J. Phys. Chem,2014,30(4):628−639 doi: 10.3866/PKU.WHXB201401211
    [16] OLAH J, Van A , Sannigrahi A. condensed fukui functions derived from stockholder charges: Assessment of their performance as local reactivity descriptors[J]. J. Phys. Chem. A, 2002, 106(15): 3885-3890.
    [17] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. J. Comput. Chem.,2012,33:580−592. doi: 10.1002/jcc.22885
    [18] 于遵宏, 王辅臣, 等. 煤炭气化技术[M]. 北京 化学工业出版社 2010.

    Yu Zunhong, Wang Fuchen, et al. Coal gasification technology [M] Beijing Chemical Industry Press, 2010)
    [19] FRISCH M, TRUCKS G, SCHLEGEL H, et al. Gaussian 09, Revision A. 02[CP]. Wallingford, CT: Gaussian, Inc. 2016.
    [20] CHAI D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom-atom disperse-on corrections[J]. Phys. Chem. Chem. Phys.,2008,10(44):6615−6620. doi: 10.1039/b810189b
    [21] MATITO E, POATER J, MIQUEL S, et al. Comparison of the AIM delocalization index and the Mayer and fuzzy atom bond orders.[J]. J. Phys. Chem. A,2005,109(43):9904−9910 doi: 10.1021/jp0538464
    [22] LU T, CHEN Q. Shermo: A general code for calculating molecular thermochemistry properties[J]. Comput. Theor. Chem,2021,1200:113249. doi: 10.1016/j.comptc.2021.113249
    [23] MERRICK J , MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J. Phys. Chem. A,2007,111(45):11683−11700.
    [24] HAMID A, ROY R. Correlation between equilibrium constant and stabilization energy: A combined approach based on chemical thermodynamics, statistical thermodynamics, and density functional reactivity theory[J]. J. Phys. Chem. A,2020,124(7):1279−1288. doi: 10.1021/acs.jpca.9b07920
    [25] SEBASTIEN C, FREDERIC B, ERIC H. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results.[J]. J. Comput. Chem,2013,35(1):82−93.
    [26] BARADYN M, RATKIEWICZ A. On-The-Fly Kinetics of the Hydrogen Abstraction by Hydroperoxyl Radical: An Application of the Reaction Class Transition State Theory[J]. Front. Chem,2021,9:806−873.
    [27] WIGNER P. On the Quantum Correction For Thermodynamic Equilibrium[J]. Phys. Rev,1997,40:749−759.
    [28] BRENNAN K, WASTON W, GARCIA-MELCHOR M. A computational study of the electrochemical cyanide reduction for ambient ammonia production on a nickel cathode[J]. Catal. Sci. Technol,2021,16:5633−5640.
    [29] CAROLINA O, VAN D , DANIEL C, et al. A density functional theory study of HCN hydrogenation to methylamine on Ni(111)[J]. J Catal,2007,245:436−445.
    [30] Tannous J H , Klerk A. Methyl and Hydrogen Transfer in Free Radical Reactions[J]. Energy Fuels,2020,34(02):1698−1709.
    [31] 天津大学无机化学教研室. 无机化学[M]. 北京 高等教育出版社 2018.

    Inorganic chemistry teaching and research office of tianjin university. inorganic chemistry [M] Beijing Higher Education Press 2018)
    [32] KROCHER O, ELSENER M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts[J]. Appl. Catal. B,2009,92(1-2):75−89. doi: 10.1016/j.apcatb.2009.07.021
    [33] KUA J, THRUSH L. HCN, Formamidic acid and formamide in aqueous solution: A free energy map.[J]. J. Phys. Chem. B,2016,120(33):8175−8185. doi: 10.1021/acs.jpcb.6b01690
    [34] 彭昌军, 胡英. 物理化学[M]. 北京 高等教育出版社 2021.

    Peng Changjun, Hu Ying. Physical Chemistry [M] Beijing Higher Education Press, 2021)
    [35] YACAI H, QI C, YAVUAN H, et al. The generalized thermodynamic temperature and the new expressions of the first and the second law of thermodynamics[J]. J. Therm. Sci,2016,25:1−6. doi: 10.1007/s11630-016-0827-1
    [36] JOSEPH M. What is the rate-limiting step of a multistep reaction?[J]. J. Chem. Educ,1981,58(1):32−38 doi: 10.1021/ed058p32
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2023-12-28
  • 录用日期:  2024-01-08
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回