留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴基FT合成催化剂中原子碳物种的作用研究

杨胜龙 王俊刚 马中义 陈从标 刘岩 张伟 解启龙 侯博

杨胜龙, 王俊刚, 马中义, 陈从标, 刘岩, 张伟, 解启龙, 侯博. 钴基FT合成催化剂中原子碳物种的作用研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024017
引用本文: 杨胜龙, 王俊刚, 马中义, 陈从标, 刘岩, 张伟, 解启龙, 侯博. 钴基FT合成催化剂中原子碳物种的作用研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024017
YANG Shenglong, WANG Jungang, MA Zhongyi, CHEN Congbiao, LIU Yan, ZHANG Wei, XIE Qilong, HOU Bo. Study on the role of atomic carbon species in cobalt-based FT synthesis catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024017
Citation: YANG Shenglong, WANG Jungang, MA Zhongyi, CHEN Congbiao, LIU Yan, ZHANG Wei, XIE Qilong, HOU Bo. Study on the role of atomic carbon species in cobalt-based FT synthesis catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024017

钴基FT合成催化剂中原子碳物种的作用研究

doi: 10.19906/j.cnki.JFCT.2024017
基金项目: 山西省研究计划(202103021224444,202102090301003)和国家自然科学基金(22179136,22279155,22208361)资助
详细信息
    通讯作者:

    Tel: 13934595876, E-mail: wangjg@sxicc.ac.cn

  • 中图分类号: O643

Study on the role of atomic carbon species in cobalt-based FT synthesis catalyst

Funds: The project was supported by the Research Program of Shanxi Province(202103021224444, 202102090301003) and National Natural Science Foundation of China(22179136, 22279155, 22208361).
  • 摘要: 费托合成是将合成气催化转化为长链重质烃的工艺过程。在此过程中,CO活化、歧化反应以及烃类脱氢反应都可以在催化剂表面形成碳物种,而碳物种对费托反应的作用一直存在争议。本工作通过对主要暴露面为HCP-Co(10-11)的单晶钴进行不同条件的预处理,成功构建了具有不同含量原子碳物种的模型催化剂,并采用程序升温加氢、拉曼光谱和红外光谱等表征手段对催化剂中的原子碳物种含量和存在形式进行分析。结果表明,在引入原子碳物种后,钴基催化剂的活性和CH4选择性与原子碳物种数量和存在形式密切相关。含碳量为5.72%的P-Co-C3催化剂具有较高的CO转化率,可达72.2%;而含碳量为3.01%的P-Co-C2催化剂具有较低的CH4选择性,仅为4.2%。此外,表征结果进一步证明该原子碳物种是以C(无定形碳)和CxHy两种形式共存,其在反应过程中可能参与了FT反应,进而提升其反应性能。
  • 图  1  不同含碳量催化剂的FT反应性能

    Figure  1  FT reaction performance of catalyst with different carbon content

    (a): CO conversion and methane selectivity at the same temperature; (b): Methane selectivity and reaction temperature at 30−40%CO conversion.

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of catalysts

    图  3  不同含碳量催化剂的TPH谱图

    Figure  3  TPH spectra of catalysts with different carbon content

    图  4  不同含碳量催化剂的漫反射红外光谱谱图

    Figure  4  Diffuse reflection infrared spectra of catalysts with different carbon content

    图  5  合成气(H2/CO=2)下P-Co催化剂的原位拉曼谱图

    Figure  5  In-situ Raman spectra of P-Co catalyst in syngas (H2/CO=2) atmosphere

    图  6  不同含碳量P-Co催化剂的C 1s XPS谱图

    Figure  6  C 1s XPS spectra of P-Co catalysts with different carbon content

    图  7  不同处理时间下的TPH-MS谱图

    Figure  7  TPH-MS spectra of catalysts with different treatment times

    图  8  C−Co和C−Co−C催化剂的XRD谱图

    Figure  8  XRD spectra of pretreated catalysts C−Co and C−Co−C

    图  9  C−Co−C催化剂的TPH谱图

    Figure  9  TPH profiles for the C−Co−C catalyst

    图  10  C−Co和C−Co−C催化剂的FT反应性能比较:30%−40%CO转化率下的CH4选择性和反应温度

    Figure  10  Comparison of FT reaction properties of C−Co and C−CO−C catalysts: CH4 selectivity and reaction temperature at 30%−40% CO conversion

    表  1  催化剂的费托反应性能

    Table  1  FT reaction performance of catalyst

    Catalyst C/% Temperature/℃ CO conversion/% Product selectivity/%
    CH4 C2-C4 C5+
    P-Co 0.00 220 28.0 9.8 13.1 77.2
    P-Co-C1 2.76 220 36.0 8.1 25.3 66.6
    P-Co-C2 3.01 220 45.7 6.0 18.7 75.3
    P-Co-C3 5.72 220 72.2 13.0 23.7 63.4
    P-Co-C4 14.12 220 29.5 14.7 34.4 50.9
    Reaction conditions:H2/CO=2, p=2 MPa, GHSV=1000 h−1, TOS=48 h.
    下载: 导出CSV
  • [1] NAVARRO V, VAN SPRONSEN MA, FRENKEN JWM. In situ observation of self-assembled hydrocarbon Fischer-Tropsch products on a cobalt catalyst[J]. Nat Chem,2016,8:929−934. doi: 10.1038/nchem.2613
    [2] KHODAKOV AY, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev,2007,107:1692−1744. doi: 10.1021/cr050972v
    [3] MOODLEY DJ, VAN DE LOOSDRECHT J, SAIB AM, et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions[J]. Appl Catal A-Gen,2009,354:102−110. doi: 10.1016/j.apcata.2008.11.015
    [4] BAE JW, KIM SM, PARK SJ, et al. Deactivation by filamentous carbon formation on Co/aluminum phosphate during Fischer-Tropsch synthesis[J]. Ind Eng Chem Res,2009,48:3228−3233. doi: 10.1021/ie801956t
    [5] PETERSEN MA, VAN DEN BERG JA, CIOBîCA IM, et al. Revisiting CO activation on Co catalysts: impact sites from dft of step and kink[J]. Acs Catalysis,2017,7:1984−1992. doi: 10.1021/acscatal.6b02843
    [6] BöLLER B, DURNER KM, WINTTERLIN J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunnelling microscopy[J]. Nat Catal,2019,2:1027−1034. doi: 10.1038/s41929-019-0360-1
    [7] CHEN W, KIMPEL T F, SONG Y J, et al. Influence of carbon deposits on the cobalt-catalyzed Fischer-Tropsch reaction: evidence of a two-site reaction model[J]. acs catalysis,2018,8:1580−1590.
    [8] HAZEMANN P, DECOTTIGNIES D, MAURY S, et al. Selectivity loss in fischer-tropsch synthesis: The effect of cobalt carbide formation[J]. J Catal,2021,397:1−12. doi: 10.1016/j.jcat.2021.03.005
    [9] TSAKOUMIS NE, RONNING M, BORG O, et al. Deactivation of cobalt based Fischer-Tropsch catalysts: A review[J]. Catal Today,2010,154:162−182. doi: 10.1016/j.cattod.2010.02.077
    [10] DAI Y Y, YU F, LI Z J, et al. Effect of sodium on the structure-performance relationship of Co/Sio2 for Fischer-Tropsch synthesis[J]. Chin J Chem,2017,35:918−926. doi: 10.1002/cjoc.201600748
    [11] KOCIC S, VALERO M C, SCHWEITZER J M, et al. Surface speciation of co based fischer-tropsch catalyst under reaction conditions: deactivation by coke or by oxidation?[J]. Appl Catal A: Gen,2020,590:12.
    [12] SWART JCW, VAN STEEN E, CIOBíCA IM, et al. Interaction of graphene with FCC−Co(111)[J]. Phys Chem Chem Phys,2009,11:803−807. doi: 10.1039/B814664K
    [13] LU WL, WANG JG, MA ZY, et al. Classifying and understanding the role of carbon deposits on cobalt catalyst for Fischer-Tropsch synthesis[J]. Fuel,2023,332:7.
    [14] QIN C, HOU B, WANG JG, et al. Tailoring carbon deposits on a single-crystal cobalt catalyst for Fischer-Tropsch synthesis without further reduction: the role of surface carbon and penetrating carbon[J]. Acs Catalysis,2023,13:8551−8560. doi: 10.1021/acscatal.3c01016
    [15] QIN C, HOU B, WANG JG, et al. Stabilizing optimal crystalline facet of cobalt catalysts for Fischer-Tropsch synthesis[J]. ACS Appl Mater Interfaces,2019,11:33886−33893. doi: 10.1021/acsami.9b10174
    [16] LIU J X, SU H Y, SUN D P, et al. Crystallographic dependence of co activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135:16284−16287. doi: 10.1021/ja408521w
    [17] GUO J Z, HOU Z Y, GAO J, et al. Drifts study on adsorption and activation of CH4 and CO2 on ni/sio2 catalyst with various ni particle sizes[J]. Chin J Catal,2007,28:22−26. doi: 10.1016/S1872-2067(07)60009-6
    [18] FENG Y, ZHANG Y, WANG J, et al. Promotion of anatase/rutile junction to direct conversion of syngas to ethanol on the Rh/Tio2 catalysts[J]. ACS Catalysis. 2024, 1874−1881.
    [19] NI ZJ, KANG SF, BAI JR, et al. Uniformity dispersive, anti-coking core@double-shell-structured Co@Sio2@c: effect of graphitic carbon modified interior pore-walls on c5+ selectivity in fischer-tropsch synthesis[J]. J Colloid Interface Sci,2017,505:325−331. doi: 10.1016/j.jcis.2017.05.096
    [20] GUAN H, WANG X, CHEN SM, et al. Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries[J]. Chem Commun,2011,47:12098−12100. doi: 10.1039/c1cc15595d
    [21] BLUME R, ROSENTHAL D, TESSONNIER JP, et al. Characterizing graphitic carbon with x-ray photoelectron spectroscopy: a step-by-step approach[J]. ChemCatChem,2015,7:2871−2881. doi: 10.1002/cctc.201500344
    [22] AT , BELL. Catalytic synthesis of hydrocarbons over group-viii metals-a discussion of the reaction-mechanism[J]. Catal Rev-Sci Eng, 1981, 23 : 203−232.
    [23] DRY ME. Practical and theoretical aspects of the catalytic fischer-tropsch process[J]. Appl Catal A-Gen,1996,138:319−344. doi: 10.1016/0926-860X(95)00306-1
    [24] Guan Z, Zhao WT, Li DB, et al. The new role of pivotal intermediate CH x in CO activation and conversion to hydrocarbons on the transition metal catalysts[J]. Fuel,2023,331:15.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  35
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-03-30
  • 录用日期:  2024-04-01
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回