留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元复合氧化物载体在加氢脱硫催化剂中的应用进展

周文武 何欣欣 唐小原 周安宁 陈治平 黄志豪 白业兴

周文武, 何欣欣, 唐小原, 周安宁, 陈治平, 黄志豪, 白业兴. 二元复合氧化物载体在加氢脱硫催化剂中的应用进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024019
引用本文: 周文武, 何欣欣, 唐小原, 周安宁, 陈治平, 黄志豪, 白业兴. 二元复合氧化物载体在加氢脱硫催化剂中的应用进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024019
ZHOU Wenwu, HE Xinxin, TANG Xiaoyuan, ZHOU Anning, CHEN Zhiping, HUANG Zhihao, BAI Yexing. Progress in application of binary composite oxides as supports for hydrodesulfurization catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024019
Citation: ZHOU Wenwu, HE Xinxin, TANG Xiaoyuan, ZHOU Anning, CHEN Zhiping, HUANG Zhihao, BAI Yexing. Progress in application of binary composite oxides as supports for hydrodesulfurization catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024019

二元复合氧化物载体在加氢脱硫催化剂中的应用进展

doi: 10.19906/j.cnki.JFCT.2024019
详细信息
  • 中图分类号: TE65

Progress in application of binary composite oxides as supports for hydrodesulfurization catalysts

  • 摘要: 加氢脱硫技术对实现劣质油品清洁化、低碳化与多元化高效利用至关重要,其关键是高性能催化剂的开发,核心之一是适宜催化剂载体材料的创新。分别总结了向Al2O3及TiO2中引入第二组元后作为加氢脱硫催化剂载体的研究进展。第二组元氧化物的引入克服了Al2O3载体酸类型单一及商用催化剂金属与载体间相互作用过强等缺点,同时保持了较大的比表面积;第二组元氧化物能够有效提升TiO2载体材料的热稳定性及比表面积的同时调节了载体材料表面酸性等。究其原因在于第二组元的引入可显著改变Al2O3或TiO2表面羟基环境,进而促进了活性金属前驱体在载体表面的锚定和分散,有利于更多NiMo(W)S活性相的形成,提升了催化剂的加氢脱硫性能。
  • 图  1  CoMo/LOMM SiO2-Al2O3催化剂的制备及其加氢脱硫性能[24]

    Figure  1  Preparation of CoMo/LOMM SiO2-Al2O3 catalyst and its hydrodesulfurization performance[24](with permission from Elsevier Publications)

    图  2  第二组元ZrO2的掺入对NiMo负载型催化剂酸性的影响[27]

    Figure  2  Effect of the addition of the second component ZrO2 on the acidity of NiMo supported catalyst[27](with permission from Elsevier Publications)

    图  3  ZrO2掺入Al2O3中的影响[28]

    Figure  3  Influence of ZrO2 incorporation into Al2O3[28] (with permission from Elsevier Publications)

    图  4  MgO的添加对NiW/Al2O3催化剂HDS活性的影响[35]

    Figure  4  Effect of MgO addition on HDS activity of NiW/Al2O3 catalyst[35](with permission from Elsevier Publications)

    图  5  CoMo/B2O3-Al2O3的制备及B2O3对MoS2活性相结构的影响

    Figure  5  Preparation of CoMo/B2O3-Al2O3 and the effect of B2O3 on the active phase structure of MoS2

    图  6  复合氧化物的制备

    Figure  6  Preparation of composite oxides

    图  7  溶胶-凝胶法制备TiO2-SiO2复合氧化物及CTS-1和CTS-4在不同焙烧温度下的孔径分布[44]

    Figure  7  Pore size distribution of TiO2-SiO2 composite oxides and CTS-1 and CTS-4 prepared by sol-gel method at different roasting temperatures[44] (with permission from ACS Publications)

    图  8  催化剂模型[46]

    Figure  8  Catalyst model[46] (with permission from De Gruyter Publications)

    图  9  TiO2掺入MgO的影响及DBT的HDS反应[48]

    Figure  9  Influence of TiO2 incorporation into MgO and HDS reaction of DBT[48](with permission from Elsevier Publications)

    图  10  溶剂挥发自组装法制备有序介孔TiO2-Al2O3复合氧化物及其对4,6-DMDBT转化率[54]

    Figure  10  Preparation of ordered mesoporous TiO2-Al2O3 composite oxides by solvent volatilization self-assembly method and their conversion to 4,6-DMDBT[54] (with permission from Elsevier Publications)

    图  11  TiO2-Al2O3载体上WS2结构变化规律[55]

    Figure  11  Variation of WS2 structure on TiO2-Al2O3 support[55] (with permission from Elsevier Publications)

    表  1  不同氧化物的特点

    Table  1  Characteristics of different oxides

    Oxide Advantage Disadvantage
    Al2O3 High specific surface area, good thermal stability, etc MSI is too strong, only L acid without B acid, etc
    TiO2 The electronic structure is adjustable, both B acid and
    L acid, etc
    Small specific surface area, poor thermal stability, etc
    SiO2 Stable chemical properties, large specific surface area, etc The mechanical strength is not high, MSI is weak
    ZrO2 The chemical properties are stable, oxidizing and reducing, acid-alkaline and so on Small specific surface area, expensive, etc
    MgO High specific surface area, high fire insulation, etc It is unstable in aqueous solution, which makes it difficult to prepare the catalyst based on it
    B2O3 High melting point and high thermal stability As a catalyst, it is easy to deactivate
    下载: 导出CSV

    表  2  催化剂的B酸和L酸 A/(g·cm2[44]

    Table  2  B acid and L acid A/(g·cm2) of catalyst[44]

    CatalystLBB+LB/(B+L)
    NiW/CTS-11.70.82.50.32
    NiW/CTS-42.31.13.40.32
    下载: 导出CSV

    表  3  TiO2-Al2O3复合氧化物的孔结构特性[59]

    Table  3  Pore structure characteristics of TiO2-Al2O3 composite oxides[59]

    Sample ABET/
    (m2·g−1)
    BJH pore volume
    v/(cm3·g−1)
    Average pore
    size d/nm
    Al2O3 296 0.80 8.01
    TiO2 145 0.38 4.40
    TiO2-Al2O3(ME) 169 0.63 11.34
    TiO2-Al2O3(SG) 242 0.88 12.24
    TiO2-Al2O3(PR) 180 0.71 11.89
    TiO2-Al2O3(CP) 291 0.26 3.08
    下载: 导出CSV
  • [1] 梁吉雷, 吴雯洁, 吴萌萌, et al. 绿色合成介孔碳负载(Ni)MoS2加氢脱硫催化剂 [J]. 燃料化学学报. 2023. 51 (12): 1761-1771

    LIANG Jilei , WU Wenjie , WU Mengmeng , et al. Green synthesis of mesoporous carbon-supported (Ni)MoS2 hydrodesulfurization catalyst [J]. J Fuel Chem Technol. 2023. 51 (12): 1761-1771)
    [2] LIANG J, WU M, QI L, et al. The superior HDS catalyst derived from a new Waugh Co-Mo polyoxometalate via cationic substitution[J]. Fuel,2024,360:130597 doi: 10.1016/j.fuel.2023.130597
    [3] GAO J, CAO Y, WU T, et al. Self-circulation of oily spent hydrodesulphurization (HDS) catalyst by catalytic pyrolysis for high quality oil recovery[J]. Environ Res,2023,222:115359 doi: 10.1016/j.envres.2023.115359
    [4] 于志庆, 黄文斌, 王晓晗, et al. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展,2023,42(7):3550−3560.

    YU Zhiqing, HANG Wenbin, WANG Xiaohan, et al. Properties of B doped Al2O3@C supported CoMo hydrodesulfurization catalyst[J]. CHEM ENG PROG,2023,42(7):3550−3560.
    [5] ZHOU W, ZHOU A, ZHANG Y, et al. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts[J]. J Catal,2019,374:345−359 doi: 10.1016/j.jcat.2019.05.013
    [6] 李乃珍, 孙瑞洁, 秦志峰, et al. 焦炉煤气常量含碳气氛对加氢脱硫催化剂活性、选择性和积炭的影响[J]. 化工进展,2023,42(2):783−793.

    LI Naizhen, SUN Ruijie, QIN Zhifeng, et al. Effect of Coke oven gas constant carbon Atmosphere on the activity, selectivity and carbon accumulation of hydrodesulfurization catalyst[J]. CHEM ENG PROG,2023,42(2):783−793.
    [7] ZHANG P, ZHOU Y, ZHANG R, et al. Effect of sulfur compounds on the hydrodenitrogenation of 1, 2, 3, 4-tetrahydroquinoline and its intermediates over NiMo/Al2O3 catalyst[J]. Fuel,2020,277:118186 doi: 10.1016/j.fuel.2020.118186
    [8] HAN W, NIE H, LONG X, et al. A study on the role of Ni atoms in the HDN activity of NiMoS2/Al2O3 catalyst[J]. APPL CATAL A-GEN,2020,593:117458 doi: 10.1016/j.apcata.2020.117458
    [9] 汪佩华, 秦志峰, 吴琼笑, et al. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展,2021,40(2):890−900.

    WANG Peihua, QIN Zhifneg, WU Qiongxiao, et al. Effect of phosphorus addition method on hydrodesulfurization performance of NiMo/Al2O3 catalyst[J]. CHEM ENG PROG,2021,40(2):890−900.
    [10] 刘娟, 李文英, 冯杰, et al. Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响[J]. 燃料化学学报,2021,49(10):1513−1521 doi: 10.1016/S1872-5813(21)60105-6

    LIU Juan, LI Wenying, FENG Jie, et al. Effect of Ni on the active phase and hydrogenation denitrification and desulfurization performance of MOS2-based catalyst[J]. J Fuel Chem Technol,2021,49(10):1513−1521 doi: 10.1016/S1872-5813(21)60105-6
    [11] SUI B-K, WANG G, YUAN S-H, et al. Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil[J]. J Fuel Chem Technol,2021,49(8):1201−1207 doi: 10.1016/S1872-5813(21)60096-8
    [12] 江洪波, 吕海龙, 陈文斌, et al. CoMo/Al2O3催化剂柴油加氢脱芳烃集总反应动力学模型[J]. 石油学报(石油加工),2019,35(3):433−439

    JIANG Hongbo, LV Hailong, CHEN Wenbin, et al. Kinetic model of lumped reaction of diesel hydrodearomatics with CoMo/Al2O3 catalyst[J]. Acta Petrol Sin: Pet Process Section,2019,35(3):433−439
    [13] 董立霞, 夏步田, 罗凯威, et al. 清洁油品升级背景下加氢脱硫技术研究进展[J]. 化工进展,2019,38(1):208−216

    DONG Lixia, XIA Butian, LUO Kaiwei, et al. Research progress of hydrodesulfurization technology under the background of clean oil upgrading[J]. CHEM ENG PROG,2019,38(1):208−216
    [14] ESEVA E, DUNKO A, LATYPOVA S, et al. Cobalt-manganese spinel structure catalysts for aerobic oxidative desulfurization[J]. Fuel,2024,357:129689 doi: 10.1016/j.fuel.2023.129689
    [15] GUOSHENG L, KUNHONG L, XIAOHAN L, et al. Acidity regulation of Fe-based catalysts and its effect on the selectivity of HDS reaction pathways[J]. J Fuel Chem Technol,2023,52:1−15
    [16] 刘昊然, 李秀萍, 赵荣祥, et al. H2WO4/GO的制备及其超声-氧化脱除模拟油中的硫化物[J]. 燃料化学学报,2019,47(7):843−851

    LIU Haoran, Li Xiuping, Zhao Rongxiang, et al. Preparation of H2WO4/GO and its removal of sulfur from simulated oil by ultrasonic oxidation[J]. J Fuel Chem Technol,2019,47(7):843−851
    [17] ZHANG Y, LIU F, CHEN W, et al. Effective reduction of hydrogen consumption in ultra-deep hydrodesulfurization of diesel: Deep insights into the effect of thermodynamic limitations during hydrotreating[J]. Fuel,2024,356:129640 doi: 10.1016/j.fuel.2023.129640
    [18] ZHANG M-H, FAN J-Y, CHI K, et al. Synthesis, characterization, and catalytic performance of NiMo catalysts supported on different crystal alumina materials in the hydrodesulfurization of diesel[J]. Fuel Process. Technol,2017,156:446−453 doi: 10.1016/j.fuproc.2016.10.007
    [19] GLOTOV A P, VUTOLKINA A V, VINOGRADOV N A, et al. Enhanced HDS and HYD activity of sulfide Co-PMo catalyst supported on alumina and structured mesoporous silica composite[J]. Catal Today,2021,377:82−91 doi: 10.1016/j.cattod.2020.10.010
    [20] 陈俊霖, 赵基钢, 江洪波, et al. 原位红外研究噻吩在硫化后Co-Mo/γ-Al2O3催化剂上吸附行为[J]. 化工进展,2020,39(S2):221−226

    CHEN Junlin, ZHAO Jigang, JIANG Hongbo, et al. In situ infrared study on the adsorption behavior of thiophene on Co-Mo/γ-Al2O3 catalyst after vulcanization[J]. CHEM ENG PROG,2020,39(S2):221−226
    [21] ROMERO-GALARZA A, RAMíREZ J, GUTIéRREZ-ALEJANDRE A, et al. Relevant changes in the properties of Co(Ni)Mo/Al2O3 HDS catalysts modified by small amounts of SiO2[J]. J Mater Res Technol,2018,33(21):3570−3579 doi: 10.1557/jmr.2018.263
    [22] LIU J, ZHU J, ZHU J, et al. One-pot three-dimensional printing of a hierarchical NiMo/Al2O3 monolithic catalyst for 4, 6-dimethyldibenzothiophene hydrodesulfurization[J]. ACS Appl Mater Interfaces,2023,15(28):33593−33604 doi: 10.1021/acsami.3c05620
    [23] LóPEZ-MENDOZA M, NAVA R, MILLáN-MALO B, et al. Catalytic performance of CoMoW Sulfide catalysts supported on hierarchically structured porous silicas for HDS reactions[J]. Catal Sci Technol,2023,14:100454
    [24] WANG Y, KOU L, LU J, et al. One-step synthesis of egg-tray-like layered ordered macro-mesoporous SiO2–Al2O3 composites for enhanced hydrodesulfurization performance[J]. Microporous Mesoporous Mater,2021,322:111131 doi: 10.1016/j.micromeso.2021.111131
    [25] RAYO P, TORRES-MANCERA P, CENTENO G, et al. Effect of silicon incorporation method in the supports of NiMo catalysts for hydrotreating reactions[J]. Fuel,2019,239:1293−1303 doi: 10.1016/j.fuel.2018.10.102
    [26] 刘海华, 李艳春, 丁传敏, et al. ZnZr/HZSM-5双功能催化剂在合成气与苯烷基化反应中的催化性能[J]. 化工进展,2021,40(12):6696−6704

    LIU Haihua, LI Yanchun, DING Chuanmin, et al. Catalytic performance of ZnZr/HZSM-5 bifocal catalyst for alkylation of synthesis gas with benzene[J]. CHEM ENG PROG,2021,40(12):6696−6704
    [27] ZHANG D, DUAN A, ZHAO Z, et al. Preparation, characterization and hydrotreating performances of ZrO2–Al2O3-supported NiMo catalysts[J]. Catal Today,2010,149(1):62−68
    [28] DíAZ-GARCíA L, SANTES V, VIVEROS-GARCíA T, et al. Electronic binding of sulfur sites into Al2O3-ZrO2 supports for NiMoS configuration and their application for Hydrodesulfurization[J]. Catal Today,2017,282:230−239 doi: 10.1016/j.cattod.2016.08.001
    [29] PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chem Soc Rev,2019,48(1):72−133 doi: 10.1039/C8CS00324F
    [30] FU H, SUN S, LIAN H. Enhanced low-temperature CO2 methanation over Ni/ ZrO2-Al2O3 catalyst: Effect of Al addition on catalytic performance and reaction mechanism[J]. J CO2 Util,2023,69:102415 doi: 10.1016/j.jcou.2023.102415
    [31] WANG H, WU J, BAO Y, et al. CO2 methanation over Ni/Al2O3-ZrO2 catalysts: Optimizing metal-oxide interfaces by calcinating-induced phase transformation of support[J]. J Environ Chem Eng,2023,11(2):109538 doi: 10.1016/j.jece.2023.109538
    [32] WANG J, YUAN Y, SHUAIB A, et al. Effect of ZrO2 in Ni2P/ZrO2–Al2O3 catalysts on hydrotreating reactions[J]. RSC Adv,2015,5(91):74312−74319 doi: 10.1039/C5RA14498A
    [33] 张晓霞, 孙秋霞, 卫藩婧, et al. 镁铝物质的量比对MoSx/MgO-Al2O3催化剂COS加氢性能的影响[J]. 燃料化学学报,2022,50(8):1051−1063

    ZANG Xioaxia, SUN Qiuxia, WEI Fanjing, et al. Effect of MG-Al ratio on COS hydrogenation performance of MoSx/MgO-Al2O3 catalyst[J]. J Fuel Chem Technol,2022,50(8):1051−1063
    [34] KALUŽA L, GULKOVá D, VíT Z, et al. High-activity MgO-supported CoMo hydrodesulfurization catalysts prepared by non-aqueous impregnation[J]. Appl Catal B,2015,162:430−436 doi: 10.1016/j.apcatb.2014.07.016
    [35] MOGICA-BETANCOURT J C, LóPEZ-BENíTEZ A, MONTIEL-LóPEZ J R, et al. Interaction effects of nickel polyoxotungstate with the Al2O3–MgO support for application in dibenzothiophene hydrodesulfurization[J]. J Catal,2014,313:9−23 doi: 10.1016/j.jcat.2014.02.009
    [36] 焦冬梅, 吴立报, 曹发海. MgO对Co-Mo/Al2O3-MgO催化剂性能的影响[J]. 石油化工,2012,41(4):405−409

    JIAO Dongmei, WU Libao, CAO Fahai. Effect of MgO on the performance of Co-Mo/Al2O3-MgO catalyst[J]. Petrkchem Techno,2012,41(4):405−409
    [37] SHANG H, GUO C, YE P, et al. Synthesis of boron modified CoMo/Al2O3 catalyst under different heating methods and its gasoline hydrodesulfurization performance[J]. Front Chem Sci Eng,2021,15(5):1088−1098 doi: 10.1007/s11705-020-1969-y
    [38] JIANG N, JIANG B, WANG S, et al. Efficient Ni2P /Al2O3 hydrodesulfurization catalysts from surface hybridization of Al2O3 particles with graphite-like carbon[J]. J Taiwan Inst Chem Eng,2021,121:139−146 doi: 10.1016/j.jtice.2021.03.053
    [39] PERONI M, MANCINO G, BARáTH E, et al. Bulk and γ-Al2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid[J]. Appl Catal B,2016,180:301−311 doi: 10.1016/j.apcatb.2015.06.042
    [40] CHU S, LI X, ZHOU X, et al. Preparation of Ni2P Supported on Al2O3 and B2O3 Mixed Oxides by Temperature-Programmed Reduction of Phosphate Precursors with Low P/Ni Ratios[J]. Top Catal,2020,63(15-18):1379−1387 doi: 10.1007/s11244-020-01344-6
    [41] LEBEAU B, BONNE M, COMPAROT J D, et al. HDS of 4, 6-dimethyldibenzothiophene over CoMoS supported mesoporous SiO2-TiO2 materials[J]. Catal Today,2020,357:675−683 doi: 10.1016/j.cattod.2019.02.052
    [42] HUANG G, SUN Z, LIU Y-Y, et al. Efficient Ni2P/SiO2 Catalysts with Enhanced Performance for the Hydrogenation of 4, 6-Dimethyldibenzothiophene and Phenanthrene[J]. Ind Eng Chem Res,2023,62(29):11428−11438 doi: 10.1021/acs.iecr.3c01523
    [43] 张绍金, 周亚松, 徐春明, et al. TiO2-SiO2复合氧化物载体及其加氢脱硫催化剂[J]. 化学反应工程与工艺,2009,25(6):518−522,544

    ZHANG Shaojin, ZHOU Yasong, XU Chunming, et al. TiO2-SiO2 composite oxide support and its hydrodesulfurization catalyst[J]. Chem Eng Technol,2009,25(6):518−522,544
    [44] WEI Q, LI Y, ZHANG T, et al. TiO2–SiO2-Composite-Supported Catalysts for Residue Fluid Catalytic Cracking Diesel Hydrotreating[J]. Energy Fuels,2014,28(12):7343−7351 doi: 10.1021/ef500799t
    [45] 陶宁, 徐亚津, 冯宇辰, et al. ZrO2-Al2O3复合氧化物催化反应精馏合成碳酸二甲酯[J]. 化工进展,2021,40(5):2603−2612

    TAO Ning, XU Yajin, FENG Yuchen, et al. Synthesis of dimethyl carbonate by catalytic distillation of ZrO2-Al2O3 composite oxides[J]. CHEM ENG PROG,2021,40(5):2603−2612
    [46] POZOS J A T, ESQUIVEL G C, ARISTA I C, et al. Co-processing of hydrodeoxygenation and hydrodesulfurization of phenol and dibenzothiophene with NiMo/Al2O3–ZrO2 and NiMo/TiO2–ZrO2 catalysts[J]. Int J Chem React Eng,2022,20(1):47−60 doi: 10.1515/ijcre-2020-0148
    [47] 李丽娜, 王海彦, 魏民, et al. MoP/TiO2-ZrO2加氢脱硫催化剂的研制[J]. 石油炼制与化工,2008,(2):16−20

    LI Lina, WANG Haiyan, WEI Ming, et al. Preparation of MoP/TiO2-ZrO2 hydrodesulfurization catalyst[J]. Pet Process Petroche,2008,(2):16−20
    [48] CRUZ PéREZ A E, TORREZ JIMéNEZ Y, VELASCO ALEJO J J, et al. NiW/MgO–TiO2 catalysts for dibenzothiophene hydrodesulfurization: Effect of preparation method[J]. Catal Today,2016,271:28−34 doi: 10.1016/j.cattod.2015.07.048
    [49] PEñA-OBESO P J, HUIRACHE-ACUñA R, ARROYO-ALBITER M, et al. Hydrodesulfurization of dibenzothiophene using NiMoWS catalysts supported on Al–Mg and Ti–Mg mixed oxides[J]. Int J Chem React Eng,2020,18(7):20190216 doi: 10.1515/ijcre-2019-0216
    [50] DAS P K, DASH S K, GANGULY R, et al. Effect of particle loading and temperature on the rheological behavior of Al2O3 and TiO2 nanofluids[J]. ENERG SOURCE PART A,2022,44(3):7062−7079 doi: 10.1080/15567036.2022.2103214
    [51] KALANGI C, BOLLEDDU V, ALLASI H L. Tribological Characteristics of Carbon Nanotubes-Reinforced Plasma-Sprayed Al2O3-TiO2 Ceramic Coatings[J]. Adv Mater Sci Eng,2021,2021:8094640
    [52] JOHNSON G R, BELL A T. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts[J]. J Catal,2016,338:250−264 doi: 10.1016/j.jcat.2016.03.022
    [53] LI X, WANG X, NING J, et al. Novel Impregnation–Deposition Method to Synthesize a Presulfided MoS2/Al2O3 Catalyst and Its Application in Hydrodesulfurization[J]. ACS Omega,2023,8(2):2596−2606 doi: 10.1021/acsomega.2c07123
    [54] ZHOU W, YANG L, LIU L, et al. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4, 6-dimethyldibenzothiophene hydrodesulfurization[J]. Appl Catal B,2020,268:118428 doi: 10.1016/j.apcatb.2019.118428
    [55] HUANG W, ZHOU Y, WEI Q, et al. Synthesis of mesoporous TiO2-Al2O3 composites supported NiW hydrotreating catalysts and their superior catalytic performance for heavy oil hydrodenitrogenation[J]. Fuel,2022,319:123802 doi: 10.1016/j.fuel.2022.123802
    [56] RAMíREZ J, RAYO P, GUTIéRREZ-ALEJANDRE A, et al. Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides: Effect of the incorporation method of Ti[J]. Catal Today,2005,109(1):54−60
    [57] GUTIéRREZ-ALEJANDRE A, RAMíREZ J, VAL I J-D, et al. Activity of NiW catalysts supported on TiO2-Al2O3 mixed oxides: Effect of Ti incorporation method on the HDS of 4, 6-DMDBT[J]. Catal Today,2005,107-108:879−884 doi: 10.1016/j.cattod.2005.07.103
    [58] SONG H, DAI M, GUO Y-T, et al. Preparation of composite TiO2–Al2O3 supported nickel phosphide hydrotreating catalysts and catalytic activity for hydrodesulfurization of dibenzothiophene[J]. Fuel Process Technol,2012,96:228−236 doi: 10.1016/j.fuproc.2012.01.001
    [59] 王广建, 李佳佳, 吴春泽, et al. TiO2-Al2O3复合载体的制备及Co-Mo/TiO2-Al2O3催化剂加氢脱硫性能的研究[J]. 燃料化学学报,2016,44(12):1518−1522

    WANG Guangjian, LI Jiajia, WU Chunze, et al. Preparation of TiO2-Al2O3 composite support and study on hydrodesulfurization performance of Co-Mo/TiO2-Al2O3 catalyst[J]. J Fuel Chem Technol,2016,44(12):1518−1522
    [60] WANG F, MA J, XIN S, et al. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance[J]. Nat Commun,2020,11(1):529 doi: 10.1038/s41467-019-13937-1
    [61] FAN Y, WANG F, LI R, et al. Surface Hydroxyl-Determined Migration and Anchoring of Silver on Alumina in Oxidative Redispersion[J]. ACS Catal,2023,13(4):2277−2285 doi: 10.1021/acscatal.2c05453
    [62] ZEPEDA T A, PAWELEC B, FIERRO J L G, et al. Removal of refractory S-containing compounds from liquid fuels on novel bifunctional CoMo/HMS catalysts modified with Ti[J]. Appl Catal B,2007,71(3):223−236
    [63] NGUYEN T T, IMAI K, PU J, et al. Effect of TiO2 Coating on Morphology of Active Phase on Sulfided CoMo/Al2O3 Hydrotreating Catalysts[J]. Energy Fuels,2018,32(2):1665−1673 doi: 10.1021/acs.energyfuels.7b03781
    [64] 郭振雪, 于海斌, 张国辉, et al. Si改性对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展,2022,41(z1):210−220

    GUO Zhenxue, YU Haibin, ZHANG Guohui, et al. Effect of Si modification on the hydrodesulfurization performance of NiMo/Al2O3 catalyst[J]. CHEM ENG PROG,2022,41(z1):210−220
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  43
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-21
  • 修回日期:  2024-03-17
  • 录用日期:  2024-03-25
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回