留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-ZnO-ZrO2催化剂孔结构调控CO2加氢制甲醇性能研究

李忠林 王禹皓 郑燕娥 江磊 李志强 王春良 何伦 李孔斋

李忠林, 王禹皓, 郑燕娥, 江磊, 李志强, 王春良, 何伦, 李孔斋. Cu-ZnO-ZrO2催化剂孔结构调控CO2加氢制甲醇性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024021
引用本文: 李忠林, 王禹皓, 郑燕娥, 江磊, 李志强, 王春良, 何伦, 李孔斋. Cu-ZnO-ZrO2催化剂孔结构调控CO2加氢制甲醇性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024021
LI Zhonglin, WANG Yuhao, ZHENG Yane, JIANG Lei, LI Zhiqiang, WANG Chunliang, HE Lun, LI Kongzhai. Pore structure modulation of Cu-ZnO-ZrO2 catalysts for methanol production from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024021
Citation: LI Zhonglin, WANG Yuhao, ZHENG Yane, JIANG Lei, LI Zhiqiang, WANG Chunliang, HE Lun, LI Kongzhai. Pore structure modulation of Cu-ZnO-ZrO2 catalysts for methanol production from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024021

Cu-ZnO-ZrO2催化剂孔结构调控CO2加氢制甲醇性能研究

doi: 10.19906/j.cnki.JFCT.2024021
基金项目: 国家自然科学基金(22368032, 22268026, 22169014)和云南省自然科学基金(202201BE070001-001, 202302AG050005, 202301AT070448, 202301AT070438, 202301AU070096)资助
详细信息
    通讯作者:

    E-mail: wangyuhao@kust.edu.cn

    LI Kongzhai (kongzhai.li@foxmail.com; kongzhai.li@aliyun.com)

  • 中图分类号: O643

Pore structure modulation of Cu-ZnO-ZrO2 catalysts for methanol production from CO2 hydrogenation

Funds: This projct was supported by the National Natural Scicence Foundation of China (22368032, 22268026, 22169014) and the Natural Science Foundation of YumanProvince(202201BE070001-001, 202302AG050005, 202301AT070448, 202301AT070438, 202301AU070096).
  • 摘要: 采用胶质晶体模板法制备了不同孔径Cu-ZnO-ZrO2(CZZ)催化剂,并对其CO2加氢制甲醇性能进行了研究。结果表明,通过改变催化剂孔径可以实现ZnO粒径大小的调控,较小的粒径表现出更卓越的催化性能。其中,在孔径为55 nm的(CZZ-55)样品上,ZnO粒径为14.5 nm,CO2转化率为14.83%,甲醇选择性为78.8%,甲醇产率可达345.8 g/(kg·h)。原位漫反射红外傅里叶变换光谱结果表明,在CZZ催化剂上CO2加氢制甲醇遵循甲酸盐路径,ZnO-ZrO2界面是CO2吸附和活化的活性位点,而三维有序大孔结构有助于形成更分散的ZnO-ZrO2活性位,提高了CO2转化率。并且孔径大小对中间体的转化具有一定影响,孔径越小,甲酸盐更容易转化为甲醇。此外,三维有序的大孔结构为产物(水汽和甲醇)快速扩散提供了“高速通道”,有效抑制CO2加氢的副产物水汽对活性位的毒化作用,较大程度提高了催化剂的稳定性,在600 h内无明显失活。
  • 图  1  PMMA晶体模板粒径

    Figure  1  PMMA crystal templates particle size

    (a): 300 nm; (b): 150 nm; (c) and (d): 90 nm.

    图  2  (a)3DOM催化剂制备流程图;(b)和(b1) CZZ-CP、(c)和(c1) CZZ-220、(d)和(d1) CZZ-55催化剂的SEM图像

    Figure  2  (a) Flow chart of 3DOM catalyst preparation; SEM images of (b) and (b1) CZZ-CP, (c) and (c1) CZZ-220,(d) and (d1) CZZ-55 catalysts

    图  3  CZZ-CP 催化剂的元素图像

    Figure  3  Elemental mapping images of CZZ-CP catalyst

    图  4  CZZ-55 催化剂的元素图像

    Figure  4  Elemental mapping images of CZZ-55 catalyst

    图  5  (a)、(e) CZZ-CP、(b)、(f) CZZ-220和(c)、(g) CZZ-55样品的TEM图像和ZnO粒径分布;(d)催化剂还原后的XRD谱图

    Figure  5  TEM images and ZnO particle size distributions of (a), (e) CZZ-CP, (b), (f) CZZ-220, (c), (g) CZZ-55; (d) XRD patterns of catalysts after reduction

    图  6  温度对CO2转化率和CH3OH选择性的影响;(a) CZZ-CP、(b) CZZ-220、(c) CZZ-55;(d) 温度与CH3OH的时空产率(STY)之间的关系;(e) Cu和(f) ZnO粒径大小与催化性能函数

    Figure  6  Effect of temperature on CO2 conversion and CH3OH selectivity; (a) CZZ-CP, (b) CZZ-220, (c) CZZ-55; (d) The relationship between temperature and space time yield (STY) of CH3OH; (e); Performance as a function of particle size of (e) Cu and(f) ZnO different sizes; Condition: 4 MPa, CO2/H2/Ar = 23∶69∶8, mcat = 0.3 g, GHSV = 9000 cm3/(g·h)

    图  7  (a) 催化剂稳定性测试;(b) 反应后的X射线衍射(XRD)图像;(c) 还原和反应后的粒度比较。(d) 普通铜基催化剂和3DOM铜基催化剂反应前后活性位点的变化

    Figure  7  (a) Catalyst stability test; (b) X-ray diffraction (XRD) image after reaction; (c) Comparison of particle size after reduction and reaction; (d) The change of active site before and after the reaction of common Cu-based catalyst and 3DOM Cu-based catalyst; Condition: 4 MPa, t = 220 ℃, CO2/H2/Ar = 23∶69∶8, mcat = 0.3 g, GHSV = 9000 cm3/(g·h)

    图  8  (a) H2程序升温还原曲线(H2-TPR);(b) CO2程序升温解吸曲线(CO2-TPD)

    Figure  8  (a) H2 temperature-programmed reduction profiles (H2-TPR); (b) CO2 temperature-programmed desorption profiles (CO2-TPD)

    图  9  XPS光谱(a) Cu 2p、(b) Zn 2p、(c) Zr 3d

    Figure  9  XPS spectra of (a) Cu 2p, (b) Zn 2p, (c) Zr 3d

    图  10  在220 °C高压条件下(a) CZZ-CP、(b) CZZ-220、(c) CZZ-55催化剂的原位DRIFT谱图;实验过程中生成的中间产物的峰面积:(d) HCOO*,(e) CH3O*,(f) CH3OH

    Figure  10  In situ DRIFT spectra of (a) CZZ-CP, (b) CZZ-220, (c) CZZ-55 catalysts at 220 °C under high pressure; Peak areas of generated intermediate species during the experiments: areas normalized to the values observed at the end of the transient;(d) HCOO*, (e) CH3O*, (f) CH3OH; Reaction conditions: gas flow rate = 45 mL/min, t = 220 ℃, CO2/H2/N2 = 23∶69∶8,p = 3.0 MPa; Spectra referenced to specimen under 3 MPa N2 at 220 °C

    图  11  (a) CZZ-CP、(b) CZZ-55、(c) ZnO/Cu-ZrO2-55、(d) Cu-ZrO2-55材料在220 ℃常压下的原位DRIFT谱图,以45 mL/min的流量将CO2(CO2已排入腔室15 min)转化为H2;实验期间生成的中间物种的峰值面积:(e) CO32-和CH3O*,(f) HCOO*

    Figure  11  In situ DRIFT spectra of (a) CZZ-CP, (b) CZZ-55, (c) ZnO/Cu-ZrO2-55, (d) Cu-ZrO2-55 materials at atmospheric pressure at 220 ℃, converting CO2 (CO2 has been vented into the chamber for 15 min) to H2 at a flow rate of 45 mL/min; Peak areas of generated intermediate species during the experiments: areas normalized to the values observed at the end of the transient; (e) CO32- and CH3O*,(f) HCOO*; Reaction conditions for in situ DRIFT spectra: gas flow rate = 45 mL/min, t = 220 ℃, 10% CO2/N2 and10% H2/N2, p = 0.01 MPa; Spectra referenced to specimen under 0.01 MPa N2 at 220 °C

    表  1  粒径统计

    Table  1  Particle size statistics

    Catalyst dCu/nm dZnO/nm $d_{{\mathrm{Zro}}_2} $/nm
    CZZ-CP 15 22.5 4
    CZZ-220 21.5 15.5 4
    CZZ-55 18 14.5 4
    Note: Calculation of particle size according to the XRD Scheller formula.
    下载: 导出CSV

    表  2  典型的Cu-ZnO-ZrO2催化剂的催化性能

    Table  2  Catalytic performance of a typical Cu-ZnO-ZrO2 catalysts

    Catalyst H2/CO2
    ratio
    t/℃ p/MPa Conv./% Sel./% STY/
    (g·kg−1·h−1)
    Cu-ZnO-ZrO2[9] 3∶1 250 3.0 19.2 30.6 37.6
    Cu-ZnO-ZrO2[10] 3∶1 260 4.0 18.7 52.0 216.7
    Cu-ZnO-ZrO2[11] 3∶1 220 3.0 5.2 81.0 83.1
    Cu-ZnO-ZrO2[12] 3∶1 220 3.0 18.2 80.2 297
    Cu-ZnO-ZrO2[13] 3∶1 280 3.0 14.25 25.0 105.5
    Cu-ZnO-ZrO2[18] 3∶1 240 3.0 17.0 41.5 48.8
    Cu-ZnO-ZrO2[19] 3∶1 260 3.0 19.4 29.3 60
    Cu-ZnO-ZrO2[20] 3∶1 240 3.0 18.0 51.2 302
    Cu-ZnO-ZrO2[21] 3∶1 230 3.0 19.3 48.6 80
    Cu-ZnO-ZrO2[22] 3∶1 240 3.0 11.8 46.0 180
    This work 3∶1 220 4.0 14.83 78.8 345.8
    下载: 导出CSV

    表  3  催化性能

    Table  3  Catalytic performance

    Catalyst Molar ratio of elements GHSV/(cm3·g−1·h−1) t (℃)/p (MPa) Conv./% Sel./%
    Cu-ZrO2-55 Cu:Zr=5:3 9000 220/4.0 6.3 72.7
    ZnO/Cu-ZrO2-55 Cu:Zn:Zr=5:2:3 9000 220/4.0 8.4 67.8
    CZZ-55 Cu:Zn:Zr=5:2:3 9000 220/4.0 14.83 78.8
    CZZ-220 Cu:Zn:Zr=5:2:3 9000 220/4.0 14.6 71.0
    CZZ-CP Cu:Zn:Zr=5:2:3 9000 220/4.0 13.2 58.4
    Note: 0.3 g catalyst is taken for each measurement; Flow is controlled at 45 mL/min.
    下载: 导出CSV
  • [1] JIANG X, NIE X, GUO X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem Rev,2020,120(15):7984−8034. doi: 10.1021/acs.chemrev.9b00723
    [2] SEN R, GOEPPERT A, SURYA PRAKASH G K. Homogeneous hydrogenation of CO2 and CO to methanol: The renaissance of low‐temperature catalysis in the context of the methanol economy[J]. Angew Chem Int Ed,2022,61(42):e202207278. doi: 10.1002/anie.202207278
    [3] ZHONG J, YANG X, WU Z, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem Soc Rev,2020,49(5):1385−1413. doi: 10.1039/C9CS00614A
    [4] LIU Y, PAN Y, WANG H, et al. Ordered mesoporous Cu-ZnO-Al2O3 adsorbents for reactive adsorption desulfurization with enhanced sulfur saturation capacity[J]. Chin J Catal,2018,39(9):1543−1551. doi: 10.1016/S1872-2067(18)63085-2
    [5] SONG L, WANG H, WANG S, et al. Dual-site activation of H2 over Cu/ZnAl2O4 boosting CO2 hydrogenation to methanol[J]. Appl Catal B: Environ,2023,322:122137. doi: 10.1016/j.apcatb.2022.122137
    [6] TU W, REN P, LI Y, et al. Gas-dependent active sites on Cu/ZnO clusters for CH3OH synthesis[J]. J Am Chem Soc,2023,145(16):8751−8756. doi: 10.1021/jacs.2c13784
    [7] ARENA F, BARBERA K, ITALIANO G, et al. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. J Catal,2007,249(2):185−194. doi: 10.1016/j.jcat.2007.04.003
    [8] GUO X, MAO D, LU G, et al. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal,2010,271(2):178−185. doi: 10.1016/j.jcat.2010.01.009
    [9] MUREDDU M, FERRARA F, PETTINAU A. Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2[J]. Appl Catal B: Environ,2019,258:117941. doi: 10.1016/j.apcatb.2019.117941
    [10] XU Y, GAO Z, PENG L, et al. A highly efficient Cu/ZnO x/ZrO2 catalyst for selective CO2 hydrogenation to methanol[J]. J Catal,2022,414:236−244. doi: 10.1016/j.jcat.2022.09.011
    [11] YANG M, YU J, ZIMINA A, et al. Probing the nature of zinc in copper-zinc-zirconium catalysts by operando spectroscopies for CO2 hydrogenation to methanol[J]. Angew Chem Int Ed,2023,62(7):e202216803. doi: 10.1002/anie.202216803
    [12] WANG Y, KATTEL S, GAO W, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J]. Nat Commun,2019,10(1):1166. doi: 10.1038/s41467-019-09072-6
    [13] CHEN C, KOSARI M, XI S, et al. Optimizing the interfacial environment of triphasic ZnO-Cu-ZrO2 confined inside mesoporous silica spheres for enhancing CO2 hydrogenation to methanol[J]. ACS ES& T Eng,2023,3(5):638−650.
    [14] ZHANG C, YU D, PENG C, et al. Research progress on preparation of 3DOM-based oxide catalysts and their catalytic performances for the combustion of diesel soot particles[J]. Appl Catal B: Environ,2022,319:121946. doi: 10.1016/j.apcatb.2022.121946
    [15] LI J, LI R, WANG W, et al. Ordered mesoporous crystalline frameworks toward promising energy applications [J]. Adv Mater, 2024, 2311460.
    [16] ZHENG Y, WANG L, LIU H, et al. A modular co‐assembly strategy for ordered mesoporous perovskite oxides with abundant surface active sites[J]. Angew Chem Int Ed,2022,61(37):e202209038. doi: 10.1002/anie.202209038
    [17] BéJAR J, ÁLVAREZ-CONTRERAS L, LEDESMA-GARCíA J, et al. An advanced three-dimensionally ordered macroporous NiCo2O4 spinel as a bifunctional electrocatalyst for rechargeable Zn-air batteries[J]. J Mater Chem A,2020,8(17):8554−8565. doi: 10.1039/D0TA00874E
    [18] XIAO J, MAO D, GUO X, et al. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol[J]. Appl Surf Sci,2015,338:146−153. doi: 10.1016/j.apsusc.2015.02.122
    [19] FREI E, SCHAADT A, LUDWIG T, et al. The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2[J]. ChemCatChem,2014,6(6):1721−1730. doi: 10.1002/cctc.201300665
    [20] BONURA G, CORDARO M, CANNILLA C, et al. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B: Environ,2014,152-153:152−161. doi: 10.1016/j.apcatb.2014.01.035
    [21] LI C, YUAN X, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Appl Catal A: Gen,2014,469:306−311. doi: 10.1016/j.apcata.2013.10.010
    [22] BONURA G, ARENA F, MEZZATESTA G, et al. Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction[J]. Catal Today,2011,171(1):251−256. doi: 10.1016/j.cattod.2011.04.038
    [23] WU J, SAITO M, TAKEUCHI M, et al. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Appl Catal A: Gen,2001,218(1):235−240.
    [24] WANG F, CHEN F, GUO X, et al. Enhanced performance and stability of Cu/ZnO catalyst by hydrophobic treatment for low-temperature methanol synthesis from CO2[J]. Catal Today,2024,425:114344. doi: 10.1016/j.cattod.2023.114344
    [25] BARROW N, BRADLEY J, CORRIE B, et al. Doubling the life of Cu/ZnO methanol synthesis catalysts via use of Si as a structural promoter to inhibit sintering[J]. Sci Adv,2024,10(3):eadk2081. doi: 10.1126/sciadv.adk2081
    [26] JIANG L, LI K, PORTER W N, et al. Role of H2O in catalytic conversion of C1 molecules [J]. J Am Chem Soc, 2024, 10.1021/jacs. 3c13374.
    [27] 刘昊然, 于志庆, 黄文斌, 等. Ce改性对CuLDH催化CO2加氢制甲醇性能的影响 [J]. 燃料化学学报(中英文), 2023, 52, 10.1016/S1872-5813(23)60392-5.

    LIU Haoran, YU Zhiqing, HUANG Wenbin, et al. Effect of Ce modification on the performance of CuLDH catalyst for CO2 hydrogenation to methanol [J]. J Fuel Chem Technol, 2023, 52, 10.1016/S1872-5813(23)60392-5.)
    [28] GUO T, GUO Q, LI S, et al. Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol[J]. J Catal,2022,407:312−321. doi: 10.1016/j.jcat.2022.01.035
    [29] 姜秀云, 杨文兵, 宋昊, 等. 甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究[J]. 燃料化学学报(中英文),2023,51(1):120−128. doi: 10.1016/S1872-5813(22)60041-0

    JIANG Xiuyun, YANG Wenbing, SONG Hao, et al. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. J Fuel Chem Technol,2023,51(1):120−128. doi: 10.1016/S1872-5813(22)60041-0
    [30] KATTEL S, YAN B, YANG Y, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. J Am Chem Soc,2016,138(38):12440−12450. doi: 10.1021/jacs.6b05791
    [31] RHODES M D, POKROVSKI K A, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part II. Transient-response infrared studies[J]. J Catal,2005,233(1):210−220. doi: 10.1016/j.jcat.2005.04.027
    [32] 王世强, 杨金海, 赵宁, 等. 不同方法制备的Cu-Mn-La-Zr催化剂上二氧化碳加氢制甲醇反应机理研究[J]. 燃料化学学报(中英文),2023,51(7):970−976. doi: 10.1016/S1872-5813(22)60079-3

    WANG Shiqiang, YANG Jinhai, ZHAO Ning, et al. Mechanistic study on the hydrogenation of CO2 to methanol over Cu-Mn-La-Zr catalysts prepared by different methods[J]. J Fuel Chem Technol,2023,51(7):970−976. doi: 10.1016/S1872-5813(22)60079-3
    [33] YANG R, ZHANG Y, IWAMA Y, et al. Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts[J]. Appl Catal A: Gen,2005,288(1):126−133.
    [34] SUN Q, LIU C-W, PAN W, et al. In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst[J]. Appl Catal A: Gen,1998,171(2):301−308. doi: 10.1016/S0926-860X(98)00096-9
    [35] WANG Y, GAO W, LI K, et al. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2[J]. Chem,2020,6(2):419−430. doi: 10.1016/j.chempr.2019.10.023
    [36] DU H, WILLIAMS C T, EBNER A D, et al. In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc[J]. Chem Mat,2010,22(11):3519−3526. doi: 10.1021/cm100703e
    [37] FENG Z, TANG C, ZHANG P, et al. Asymmetric sites on the ZnZrO x catalyst for promoting formate formation and transformation in CO2 hydrogenation[J]. J Am Chem Soc,2023,145(23):12663−12672. doi: 10.1021/jacs.3c02248
    [38] MEUNIER F C, DANSETTE I, PAREDES‐NUNEZ A, et al. Cu‐bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2[J]. Angew Chem Int Ed,2023,62(29):e202303939. doi: 10.1002/anie.202303939
    [39] WU W, WANG Y, LUO L, et al. CO2 hydrogenation over copper/ZnO single-atom catalysts: Water-promoted transient synthesis of methanol[J]. Angew Chem Int Ed,2022,61(48):e202213024. doi: 10.1002/anie.202213024
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 修回日期:  2024-03-24
  • 录用日期:  2024-04-02
  • 网络出版日期:  2024-05-21

目录

    /

    返回文章
    返回