留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/SiO2协同DBD等离子体催化甲烷干重整性能研究

郑兆宇 徐波 曾傲楠 王安杰 刘颖雅 孙志超 王瑶

郑兆宇, 徐波, 曾傲楠, 王安杰, 刘颖雅, 孙志超, 王瑶. Ni/SiO2协同DBD等离子体催化甲烷干重整性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024022
引用本文: 郑兆宇, 徐波, 曾傲楠, 王安杰, 刘颖雅, 孙志超, 王瑶. Ni/SiO2协同DBD等离子体催化甲烷干重整性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024022
ZHENG Zhaoyu, XU Bo, ZENG Aonan, WANG Anjie, LIU Yingya, SUN Zhichao, WANG Yao. DBD plasma-assisted dry reforming of methane over Ni/SiO2[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024022
Citation: ZHENG Zhaoyu, XU Bo, ZENG Aonan, WANG Anjie, LIU Yingya, SUN Zhichao, WANG Yao. DBD plasma-assisted dry reforming of methane over Ni/SiO2[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024022

Ni/SiO2协同DBD等离子体催化甲烷干重整性能研究

doi: 10.19906/j.cnki.JFCT.2024022
基金项目: 国家自然科学基金(22172015)资助
详细信息
    通讯作者:

    Tel:0411-84986015,E-mail: wangyao@dlut.edu.cn

  • 中图分类号: O643

DBD plasma-assisted dry reforming of methane over Ni/SiO2

Funds: The project was supported by National Natural Science Foundation of China ( 22172015).
  • 摘要: 分别采用沉积沉淀法(DP)和浸渍法(IMP)制备Ni/SiO2催化剂前体,前体经H2还原得到Ni/SiO2-DP和Ni/SiO2-IMP。对所制备的催化剂进行X射线衍射、X射线光电子能谱、N2吸附-脱附、化学吸附、傅里叶变换红外、透射电镜和拉曼光谱表征,并考察其与介质阻挡放电等离子体(DBD)协同催化甲烷干重整(DRM)制合成气反应性能。研究结果表明,相较于Ni/SiO2-IMP,Ni/SiO2-DP因其较小的Ni颗粒尺寸、Ni与载体的强相互作用以及对反应物分子较强的吸附活化能力,具有更高的催化活性和稳定性。对Ni/SiO2-DP制备条件考察结果表明,H2等离子体还原(PR)的Ni/SiO2-DP-PR比程序升温还原(TPR)的Ni/SiO2-DP-TPR具有更高的催化活性。沉积沉淀时间为10 h,H2等离子体还原时间为30 min时,CH4和CO2转化率分别为72.5%和78.2%,H2和CO选择性分别为86.7%和94.2%,能量利用率为4.36 mmol/kJ。
  • 图  1  催化剂前体的(a)XRD谱图(b)FT-IR谱图

    Figure  1  (a) XRD patterns and (b) FT-IR spectra of catalysts precursors

    图  2  催化剂前体的H2-TPR谱图

    Figure  2  H2-TPR profiles of precursors of catalysts

    图  3  (a)Ni/SiO2-DP和Ni/SiO2-IMP的XRD谱图(b)Ni/SiO2-DP 的FT-IR谱图

    Figure  3  (a) XRD patterns of Ni/SiO2-DP and Ni/SiO2-IMP (b) FT-IR spectra of Ni/SiO2-DP

    图  4  (a)Ni/SiO2-DP的TEM图像(b)Ni/SiO2-IMP的TEM图像

    Figure  4  (a) TEM image of Ni/SiO2-DP (b) TEM image of Ni/SiO2-IMP

    图  5  Ni/SiO2-DP和Ni/SiO2-IMP的氮气吸附-脱附等温线

    Figure  5  N2 adsorption-desorption isotherms of Ni/SiO2-DP and Ni/SiO2-IMP

    图  6  Ni/SiO2-DP和Ni/SiO2-IMP的(a)CH4-TPD谱图(b)CO2-TPD谱图

    Figure  6  (a) CH4-TPD profiles and (b) CO2-TPD profiles of Ni/SiO2-DP and Ni/SiO2-IMP

    图  7  Ni/SiO2-DP的Ni 2p XPS谱图

    Figure  7  Ni 2p XPS spectra of Ni/SiO2-DP

    图  8  Ni/SiO2-DP和Ni/SiO2-IMP的干重整催化活性(a)反应物转化率(b)产物选择性

    Figure  8  The catalytic performance of the Ni/SiO2-DP and Ni/SiO2-IMP for DRM (a) conversion of reactants(b) selectivity of products

    图  9  Ni/SiO2-DP和Ni/SiO2-IMP的干重整稳定性

    Figure  9  Stability test of the Ni/SiO2-DP and Ni/SiO2-IMP for DRM

    图  10  (a)反应后Ni/SiO2-DP和Ni/SiO2-IMP的XRD谱图(b)反应后Ni/SiO2-DP和Ni/SiO2-IMP的TG曲线(c)反应后Ni/SiO2-DP和Ni/SiO2-IMP的拉曼光谱(d)反应后Ni/SiO2-DP的TEM图像

    Figure  10  (a) XRD patterns of the Ni/SiO2-DP and Ni/SiO2-IMP after reaction (b) TG curves of the Ni/SiO2-DP and Ni/SiO2-IMP after reaction (c) Raman spectra of the Ni/SiO2-DP and Ni/SiO2-IMP after reaction (d) TEM image of Ni/SiO2-DP after reaction

    图  11  TPR温度对干重整催化活性影响(a)反应物转化率(b)产物选择性

    Figure  11  Effect of TPR temperature on the catalytic performance of Ni/SiO2-DP for DRM (a) conversion of reactants (b) selectivity of products

    图  12  还原方法对干重整催化活性影响(a)反应物转化率(b)产物选择性

    Figure  12  Effect of reduction way on the catalytic performance of Ni/SiO2-DP for DRM (a) conversion of reactants (b) selectivity of products

    图  13  Ni/SiO2-DP-PR和Ni/SiO2-DP-TPR500的XRD谱图

    Figure  13  XRD patterns of Ni/SiO2-DP-PR and Ni/SiO2-DP-TPR500

    图  14  H2 等离子体还原时间对干重整催化活性影响(a)反应物转化率(b)产物选择性

    Figure  14  Effect of H2 plasma reduction time on the catalytic performance of Ni/SiO2-DP-PR for DRM (a) conversion of reactants (b) selectivity of products

    图  15  不同H2等离子体还原时间的Ni/SiO2-DP-PR的XRD谱图

    Figure  15  XRD patterns of Ni/SiO2-DP-PR under different H2 plasma reduction time

    图  16  沉积沉淀时间对Ni/SiO2-DP-PR干重整催化活性影响(a)反应物转化率(b)产物选择性

    Figure  16  Effect of DP time on the catalytic performance of Ni/SiO2-DP -PR for DRM (a) conversion of reactants (b) selectivity of products

    表  1  不同沉积沉淀时间的Ni/SiO2-DP的物理结构特征参数

    Table  1  Physical structural charateristics of Ni/SiO2-DP with different DP time

    Catalyst SBET/(m2·g−1) v/(cm3·g−1) d/nm
    Ni/SiO2-DP-4 h 247.7 0.64 8.86
    Ni/SiO2-DP-10 h 242.0 0.66 9.11
    Ni/SiO2-DP-16 h 223.5 0.68 9.78
    下载: 导出CSV

    表  2  Ni/SiO2-DP协同DBD等离子体催化干重整性能

    Table  2  The catalytic performance of Ni/SiO2-DP for DRM with DBD plasma

    Input power/W Conversion/% Selectivity/%
    CH4 CO2 H2 CO
    19 25.3 23.2 60.1 68.3
    21 34.6 37.8 71.6 85.1
    23 45.3 51.4 77.5 89.6
    25 54.1 62.6 80.1 92.1
    27 72.5 78.2 86.7 94.2
    下载: 导出CSV

    表  3  Ni/SiO2-DP热法催化干重整性能

    Table  3  The catalytic performance of Ni/SiO2-DP for DRM with thermal catalysis

    Reaction temp./℃ Conversion/% Selectivity/%
    CH4 CO2 H2 CO
    600 50.6 54.8 76.9 93.9
    650 67.3 72.8 81.2 96.1
    700 81.1 84.5 83.6 97.6
    750 89.9 91.0 84.7 98.7
    800 95.0 94.2 86.1 99.1
    下载: 导出CSV
  • [1] ZACHOS J C, DICKENS G R, ZEEBE R E. An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature,2008,451(7176):279−283. doi: 10.1038/nature06588
    [2] WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem. Soc. Rev.,2011,40(7):3703−3727. doi: 10.1039/c1cs15008a
    [3] BAHMANPOUR A M, SIGNORILE M, KRöCHER O. Recent progress in syngas production via catalytic CO2 hydrogenation reaction[J]. Appl. Catal. , B,2021,295:120319. doi: 10.1016/j.apcatb.2021.120319
    [4] SAQIB N, RADULESCU M, USMAN M, et al. Environmental technology, economic complexity, renewable electricity, environmental taxes and CO2 emissions: Implications for low-carbon future in G-10 bloc[J]. Heliyon,2023,9(6):e16457. doi: 10.1016/j.heliyon.2023.e16457
    [5] DIAO Y A, WANG H Y, CHEN B B, et al. Ordered mesoporous Ni-La2O3/Al2O3 catalysts towards efficient plasma-assisted dry reforming of methane[J]. Fuel Process. Technol.,2023,243:107676. doi: 10.1016/j.fuproc.2023.107676
    [6] CHUNG W C, CHANG M B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects[J]. Renewable Sustainable Energy Rev.,2016,62:13−31. doi: 10.1016/j.rser.2016.04.007
    [7] LI K, LIU J L, LI X S, et al. Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis[J]. Chem. Eng. J.,2018,353:297−304. doi: 10.1016/j.cej.2018.07.111
    [8] TU X, GALLON H J, TWIGG M V, et al. Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor[J]. J. Phys. D: Appl. Phys.,2011,44(27):274007. doi: 10.1088/0022-3727/44/27/274007
    [9] TU X, WHITEHEAD J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature[J]. Appl. Catal. , B,2012,125:439−448. doi: 10.1016/j.apcatb.2012.06.006
    [10] KHOJA A H, TAHIR M, AMIN N A S. Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane[J]. Energy Convers. Manage.,2019,183:529−560. doi: 10.1016/j.enconman.2018.12.112
    [11] UYTDENHOUWEN Y, BAL K M, NEYTS E C, et al. On the kinetics and equilibria of plasma-based dry reforming of methane[J]. Chem. Eng. J.,2021,405:126630. doi: 10.1016/j.cej.2020.126630
    [12] KUAI P Y, LIU C J, HUO P P. Characterization of CuO-ZnO catalyst prepared by decomposition of carbonates using dielectric-barrier discharge plasma[J]. Catal. Lett.,2009,129(3-4):493−498. doi: 10.1007/s10562-008-9829-2
    [13] ZENG Y X, ZHU X B, MEI D H, et al. Plasma-catalytic dry reforming of methane over γ-Al2O3 supported metal catalysts[J]. Catal. Today,2015,256:80−87. doi: 10.1016/j.cattod.2015.02.007
    [14] LI J W, DOU L G, GAO Y, et al. Revealing the active sites of the structured Ni-based catalysts for one-step CO2/CH4 conversion into oxygenates by plasma-catalysis[J]. J. CO2 Util.,2021,52:101675. doi: 10.1016/j.jcou.2021.101675
    [15] SCARDUELLI G, GUELLA G, ASCENZI D, et al. Synthesis of liquid organic compounds from CH4 and CO2 in a dielectric barrier discharge operating at atmospheric pressure[J]. Plasma Processes Polym.,2011,8(1):25−31. doi: 10.1002/ppap.201000044
    [16] SONG H K, CHOI J W, YUE S H, et al. Synthesis gas production via dielectric barrier discharge over Ni/γ-Al2O3 catalyst[J]. Catal. Today,2004,89(1-2):27−33. doi: 10.1016/j.cattod.2003.11.009
    [17] TAO X M, YANG C, HUANG L, et al. DBD plasma combined with catalysts derived from NiMgAlCe hydrotalcite for CO2 reforming of CH4[J]. Mater. Chem. Phys.,2020,250:123118. doi: 10.1016/j.matchemphys.2020.123118
    [18] ZHANG Q L, WANG M Z, ZHANG T F, et al. A stable Ni/SBA-15 catalyst prepared by the ammonia evaporation method for dry reforming of methane[J]. Rsc Adv.,2015,5(114):94016−94024. doi: 10.1039/C5RA18845H
    [19] BIAN Z F, KAWI S. Highly carbon-resistant Ni-Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane[J]. J. CO2 Util.,2017,18:345−352. doi: 10.1016/j.jcou.2016.12.014
    [20] 李振宇. 高耐磨环氧树脂纳米复合材料的制备及性能 [D]. 安徽理工大学, 2020

    LI Zhenyu. Preparation and characterization of epoxy nanocomposites with excellent anti-wear performance [D]. AnHui University of Science and Technology, 2020.)
    [21] HONGMANOROM P, ASHOK J, ZHANG G H, et al. Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived NiMg/SBA-15 catalysts[J]. Appl. Catal. , B,2021,282:119564. doi: 10.1016/j.apcatb.2020.119564
    [22] YAN L, LIU X X, DENG J, et al. Molybdenum modified nickel phyllosilicates as a high performance bifunctional catalyst for deoxygenation of methyl palmitate to alkanes under mild conditions[J]. Green Chem.,2017,19(19):4600−4609. doi: 10.1039/C7GC01720K
    [23] TAN J J, XIA X L, CUI J L, et al. Efficient tuning of surface nickel species of the Ni-phyllosilicate catalyst for the hydrogenation of maleic anhydride[J]. J. Phys. Chem. C,2019,123(15):9779−9787. doi: 10.1021/acs.jpcc.8b11972
    [24] WANG X, ZHU S H, WANG S, et al. Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol[J]. Appl. Catal. , A,2018,568:231−241. doi: 10.1016/j.apcata.2018.10.009
    [25] BARTON R R, CARRIER M, SEGURA C, et al. Ni/HZSM-5 catalyst preparation by deposition-precipitation. part 1. effect of nickel loading and preparation conditions on catalyst properties[J]. Appl. Catal. , A,2017,540:7−20. doi: 10.1016/j.apcata.2017.03.040
    [26] BIAN Z F, KAWI S. Preparation, characterization and catalytic application of phyllosilicate: A review[J]. Catal. Today,2020,339:3−23. doi: 10.1016/j.cattod.2018.12.030
    [27] SIVAIAH M V, PETIT S, BEAUFORT M F, et al. Nickel based catalysts derived from hydrothermally synthesized 1: 1 and 2: 1 phyllosilicates as precursors for carbon dioxide reforming of methane[J]. Microporous Mesoporous Mater.,2011,140(1-3):69−80. doi: 10.1016/j.micromeso.2010.09.015
    [28] LIU Z C, ZHOU J, CAO K, et al. Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide[J]. Appl. Catal. , B,2012,125:324−330. doi: 10.1016/j.apcatb.2012.06.003
    [29] YE R P, LIAO L, REINA T R, et al. Engineering Ni/SiO2 catalysts for enhanced CO2 methanation[J]. Fuel,2021,285:119151. doi: 10.1016/j.fuel.2020.119151
    [30] BANG S, HONG E, BAEK S W, et al. Effect of acidity on Ni catalysts supported on P-modified Al2O3 for dry reforming of methane[J]. Catal. Today,2018,303:100−105. doi: 10.1016/j.cattod.2017.08.013
    [31] ZHANG T F, LIU Q. Lanthanum-modified MCF-derived nickel phyllosilicate catalyst for enhanced CO2 methanation: A comprehensive study[J]. ACS Appl. Mater. Interfaces,2020,12(17):19587−19600. doi: 10.1021/acsami.0c03243
    [32] SOGHRATI E, ONG T K C, POH C K, et al. Zeolite-supported nickel phyllosilicate catalyst for C-O hydrogenolysis of cyclic ethers and polyols[J]. Appl. Catal. , B,2018,235:130−142. doi: 10.1016/j.apcatb.2018.04.053
    [33] XIONG K, GAO Y, CHEN J, et al. Ordered porous Ni decorated by thin-layer amorphous nickel-phosphorus mild electrochemical phosphorization for enhancing the hydrogen evolution performance[J]. Chem. Commun.,2020,56(4):611−614. doi: 10.1039/C9CC08698F
    [34] KAWI S, KATHIRASER Y, NI J, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. Chemsuschem,2015,8(21):3556−3575. doi: 10.1002/cssc.201500390
    [35] WANG J J, WANG X X, ALQAHTANI M S, et al. Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation[J]. Chem. Eng. J.,2023,451:138661. doi: 10.1016/j.cej.2022.138661
    [36] PENG W, LI Z B, LIU B, et al. Enhanced activity and stability of Ce-doped PrCrO3-supported nickel catalyst for dry reforming of methane[J]. Sep. Purif. Technol.,2022,303:122245. doi: 10.1016/j.seppur.2022.122245
    [37] QU H, YANG H, HAN L B, et al. Sandwich-structured nickel/kaolinite catalyst with boosted stability for dry reforming of methane with carbon dioxide[J]. Chem. Eng. J.,2023,453:139694. doi: 10.1016/j.cej.2022.139694
    [38] WANG F G, HAN K H, YU W S, et al. Low temperature CO2 reforming with methane reaction over CeO2-modified Ni@SiO2 catalysts[J]. ACS Appl. Mater. Interfaces,2020,12(31):35022−35034. doi: 10.1021/acsami.0c09371
    [39] 赵俊. 金属磷化物的制备及其甲烷化性能研究 [D]; 天津大学, 2019.

    ZHAO Jun. Study on preparation of metal phosphides and its methanation performance [D]. Tianjin University, 2019.)
    [40] 王伟. 氢等离子还原法制备磷化镍及加氢精制催化性能研究[D]. 大连理工大学, 2018

    WANG Wei. Preparation of nickel phosphides by hydrogen plasma reduction and their catalytic performance in hydrotreatment [D]. Dalian University of Technology, 2018.)
    [41] GUAN J, WANG Y, QIN M L, et al. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma[J]. J. Solid State Chem.,2009,182(6):1550−1555. doi: 10.1016/j.jssc.2009.03.026
    [42] XIA L H, FANG X Z, XU X L, et al. The promotional effects of plasma treating on Ni/Y2Ti2O7 for steam reforming of methane (SRM): Elucidating the NiO-support interaction and the states of the surface oxygen anions[J]. Int. J. Hydrogen Energy,2020,45(7):4556−4569. doi: 10.1016/j.ijhydene.2019.12.119
    [43] LIU C J, ZOU J J, YU K L, et al. Plasma application for more environmentally friendly catalyst preparation[J]. Pure Appl. Chem.,2006,78(6):1227−1238. doi: 10.1351/pac200678061227
    [44] 关杰. 氢等离子体法制备金属磷化物及其加氢脱硫性能[D]. 大连理工大学, 2009

    (GUAN Jie. Synthesis of transition-metal phosphides by reduction in hydrogen plasma and its hydrodesulfurization performance [D]. Dalian University of Technology, 2009.)
    [45] 遇治权. Ni3P基催化剂的制备及苯酚加氢脱氧性能[D]. 大连理工大学, 2019

    YU Zhiquan. Preparation of Ni3P-based catalysts and their catalytic performances in phenol hydrodeoxygenation [D]. Dalian University of Technology, 2019.)
    [46] YAN X L, ZHAO B R, LIU Y, et al. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: Current status and perspective[J]. Catal. Today,2015,256:29−40. doi: 10.1016/j.cattod.2015.04.045
    [47] RAY D, REDDY P M K, SUBRAHMANYAM C. Ni-Mn/γ-Al2O3 assisted plasma dry reforming of methane[J]. Catal. Today,2018,309:212−218. doi: 10.1016/j.cattod.2017.07.003
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  40
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-21

目录

    /

    返回文章
    返回