留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同方法合成钼基氧硫复合物催化剂及其合成气制乙醇性能研究

宇文晓萌 冯文爽 穆晓亮 赵璐 房克功

宇文晓萌, 冯文爽, 穆晓亮, 赵璐, 房克功. 不同方法合成钼基氧硫复合物催化剂及其合成气制乙醇性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024027
引用本文: 宇文晓萌, 冯文爽, 穆晓亮, 赵璐, 房克功. 不同方法合成钼基氧硫复合物催化剂及其合成气制乙醇性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024027
YUWEN Xiaomeng, FENG Wenshuang, MU Xiaoliang, ZHAO Lu, FANG Kegong. Study on different synthesis methods of molybdenum-based oxide and sulfide catalyst and its performance in syngas to ethanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024027
Citation: YUWEN Xiaomeng, FENG Wenshuang, MU Xiaoliang, ZHAO Lu, FANG Kegong. Study on different synthesis methods of molybdenum-based oxide and sulfide catalyst and its performance in syngas to ethanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024027

不同方法合成钼基氧硫复合物催化剂及其合成气制乙醇性能研究

doi: 10.19906/j.cnki.JFCT.2024027
基金项目: 国家重点研发计划(2023YFB4103201),国家自然科学基金(21978313),中国科学院山西煤炭化学研究所创新基金(SCJC–DT–2022–05),煤转化国家重点实验室自主研究课题项目(2020BWZ002),中国科学院青年创新促进会人才项目(2020181)资助
详细信息
    通讯作者:

    Tel: +86-0351-4041153, E-mail: zhaolu@sxicc.ac.cn

    kgfang@sxicc.ac.cn

  • 中图分类号: O643.3

Study on different synthesis methods of molybdenum-based oxide and sulfide catalyst and its performance in syngas to ethanol

Funds: The project was supported by the National Key Research and Development Program of China (2023YFB4103201), National Natural Science Foundation of China (21978313), the Innovation Foundation of ICC-CAS (SCJC-DT-2022-05), the Autonomous Research Project of SKLCC (2020BWZ002) and the Youth Innovation Promotion Association of CAS (2020181).
  • 摘要: 合成气一步制乙醇是利用非石油资源生产乙醇的重要方法,如何提高乙醇选择性、创制高效催化剂是改善过程经济性的重点。本研究从硫化钼前体出发,分别采用传统热法和射频低温等离子体法制备钼基氧硫复合物催化剂并考察其催化合成气制乙醇反应性能。利用XRD、UV-visible、HR-TEM、SEM、HAADF-STEM、XPS、CO-TPD、H2-TPD、CO2-TPD和In-situ DRIFTS等表征手段研究不同制备方法下合成的钼基氧硫复合物催化剂的不同物化性质,进而探究特征差异引发的催化反应性能变化。其中,MOS-P催化剂表现出最佳性能,在6 MPa、320 ℃、空速4500 h−1的反应条件下,CO转化率达到22.5%,总醇选择性可达71.4%,其中,总醇中乙醇占比为29.1%。有关研究将为合成气定向转化提供理论指导并为新型钼基材料的设计与制备提供借鉴。
  • 图  1  射频低温等离子体装置示意图

    Figure  1  Schematic diagram of radio frequency non-thermal plasma device

    图  2  合成气制乙醇反应流程示意图

    Figure  2  Schematic diagram of reaction device for alcohols synthesis from syngas

    1: Reagent gas; 2: Pre-system pressure setter; 3: Mass flowmeter; 4: Temperature controller; 5: Heating furnace;6: Reactor; 7: Catalytic bed; 8: Heat trap; 9: Cold trap;10: Post-system pressure setter; 11: Gas chromatography;12: Gas outlet.

    图  3  不同方法合成的Mo基氧硫复合物催化剂的XRD谱图(a)和UV-visible谱图(b)

    Figure  3  XRD patterns (a) and UV-visible profiles (b) of the different MOS catalysts synthesized by different methods

    图  4  不同催化剂中MoS2与MoO3的相对含量

    Figure  4  The relative content of MoS2 and MoO3 in different catalysts

    图  5  (a)MS催化剂的SEM图像;(b)MS催化剂的HR-TEM图像;(c)MOS-T催化剂的SEM图像;(d)MOS-T催化剂的HR-TEM图像;(e)MOS-P催化剂的SEM图像;(f)MOS-P催化剂的HR-TEM图像;(g)MO催化剂的SEM图像;(h)MO催化剂的HR-TEM图像;(i)−(n)各催化剂中MoS2和MoO3的平均粒径

    Figure  5  (a) SEM image of the MS catalyst; (b) HR-TEM image of the MS catalyst; (c) SEM image of the MOS-T catalyst; (d) HR-TEM image of the MOS-T catalyst; (e) SEM image of the MOS-P catalyst; (f) HR-TEM image of the MOS-P catalyst; (g) SEM image of the MO catalyst; (h) HR-TEM image of the MO catalyst; (i)−(n) Particle size of MoS2 and MoO3 in each catalyst

    图  6  (a)、(b)MOS-P催化剂的TEM图像;(c)MOS-P催化剂的HAADF-STEM图像

    Figure  6  (a), (b) TEM images of the MOS-P catalyst; (c) HAADF-STEM images of the MOS-P catalyst

    图  7  不同催化剂的XPS光谱谱图

    Figure  7  XPS spectra of different catalysts

    (a): Full spectrum scanning results; (b): Mo element; (c): O element; (d): S element.

    图  8  不同催化剂的CO-TPD谱图

    Figure  8  CO-TPD profiles of the different catalysts

    图  9  不同催化剂的H2-TPD谱图

    Figure  9  H2-TPD profiles of the different catalysts

    图  10  不同催化剂的CO2-TPD谱图

    Figure  10  CO2-TPD profiles of the different catalysts

    图  11  MOS-T催化剂与MOS-P催化剂的in-situ DRIFTS谱图

    Figure  11  In-situ DRIFTS over the MOS-T catalyst and MOS-P catalyst

    表  1  不同催化剂的CO、H2和CO2吸附量

    Table  1  Amount of CO, H2 and CO2 on different catalysts

    Catalyst Amount of CO/(μmol·g−1) Amount of H2/(μmol·g−1) Amount of CO2/(μmol·g−1)
    peak i peak ii total
    MS 39 28 28 376
    MOS-T 47 116(60%) 78(40%) 194 352
    MOS-P 80 90(45%) 111(55%) 201 294
    MO 21 10 10
    下载: 导出CSV

    表  2  不同催化剂的合成气制乙醇催化反应性能a

    Table  2  The catalytic performance of different catalysts for the synthesis of ethanol from syngas a

    Catalyst
    CO conv./% STYEtOH
    /(mg·mL−1·h−1)
    Product selectivity s/% b Alcohol distribution w/% Hydrocarbon distribution w/%
    ROHc CHnd MeOH EtOH C3+OHe C1 C2 C3+
    MS 14.1 13.5 68.8 31.2 66.5 22.5 11.0 57.2 26.1 16.7
    MOS-T 18.9 18.9 69.6 30.4 64.3 23.6 12.1 55.3 27.7 17.0
    MOS-P 22.5 32.0 71.4 28.6 55.2 29.1 15.7 62.5 23.1 14.4
    MO 12.3 14.2 55.9 44.1 53.6 28.3 18.1 61.2 24.2 14.6
    a: Reactions were carried out at 320 ℃, 6.0 MPa, GHSV=4500 h−1, H2/CO =2. STY is space-time yield; b: CO2 free; c: ROH means total alcohols and d: CHn means total hydrocarbons; e: Alcohols with carbon number above 3 were obtained in the product (propanol, butanol and pentanol).
    下载: 导出CSV

    表  3  本研究与文献中合成乙醇Mo基催化剂的催化性能对比

    Table  3  A comparison of the catalytic performance of Mo-based catalysts for ethanol synthesis between this study and the literature

    Catalyst A[22]
    Rh-K-MoP/SiO2
    B[25]
    MoO2-Pla
    C[52]
    β-Mo2C
    D[53]
    K/β-Mo2C/GMC
    E[54]
    Mo-K/MWCNT
    This work
    MOS-P
    CO conversion/% 18.0 16.3 58.6 1.3 19 22.5
    EtOH/ROH/% 27.7 38.0 18 34.6 28 29.1
    STYEtOH/(mg·mL−1·h−1) 22.8 21.6 2.2 11.5 30.8 32.0
    下载: 导出CSV
  • [1] MORAD M H. Current status and future perspectives of efficient catalytic conversion of bioethanol to value-added chemicals and fuels[J]. Arab J Chem,2024,17(2):105560. doi: 10.1016/j.arabjc.2023.105560
    [2] MONDAL P, SADHUKHAN A K, GANGULY A, et al. Production of blending quality bioethanol from broken rice: Optimization of process parameters and kinetic modeling[J]. Biotechnol Appl Biochem,2022,194(11):5474−5505. doi: 10.1007/s12010-022-03858-z
    [3] GAO J, LI Z, DONG M, et al. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front Chem Sci Eng,2020,14(5):847−856. doi: 10.1007/s11705-019-1848-6
    [4] REN Z, YOUNIS M N, LI C, et al. Highly active Ce, Y, La-modified Cu/SiO2 catalysts for hydrogenation of methyl acetate to ethanol[J]. RSC Adv,2020,10(10):5590−5603. doi: 10.1039/C9RA08780J
    [5] WANG C, ZHANG J, QIN G, et al. Direct conversion of syngas to ethanol within zeolite crystals[J]. Chem,2020,6(3):646−657. doi: 10.1016/j.chempr.2019.12.007
    [6] KALCK P, LE BERRE C, SERP P. Recent advances in the methanol carbonylation reaction into acetic acid[J]. Coordin Chem Rev,2020,402:213078. doi: 10.1016/j.ccr.2019.213078
    [7] SUN K, TAN M, BAI Y, et al. Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols[J]. J Catal,2019,378:1−16. doi: 10.1016/j.jcat.2019.08.013
    [8] HUANG J, BAI K, GAO M, et al. Influence of the precursors in CuZnAl slurry catalyst preparation by the complete liquid phase for the ethanol synthesis from syngas[J]. Int J Hydrogen Energy,2023,48(87):33850−33863. doi: 10.1016/j.ijhydene.2023.05.123
    [9] 王占慧, 凌丽霞, 王俊刚, 等. 合成气制乙醇RhCu双金属催化剂活性位点的作用机制研究[J]. 燃料化学学报(中英文),2021,49(3):358−365.

    WANG Zhanhui, LING Lixia, WANG Jungang, et al. Study on the effect of active sites of ethanol synthesis from syngas over RhCu bimetallic catalyst[J]. J Fuel Chem Technol,2021,49(3):358−365.
    [10] 李超, 陈永恩, 黄伟, 等. 不同Cu源与Zn源对CuZnAl催化剂催化合成气制乙醇性能的影响[J]. 燃料化学学报(中英文),2015,43(7):852−856.

    LI Chao, CHEN Yongen, HUANG Wei, et al. Effect of the source of Cu and Zn on the ethanol synthesis from syngas over CuZnAl catalyst[J]. J Fuel Chem Technol,2015,43(7):852−856.
    [11] DU H, JIANG M, ZHAO M, et al. Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer-Tropsch synthesis[J]. Int J Hydrogen Energy,2022,47(7):4559−4567. doi: 10.1016/j.ijhydene.2021.11.070
    [12] ZENG Z, LI Z, GUAN T, et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: Evolution of active sites and Na promoting effect[J]. J Catal,2022,405:430−444. doi: 10.1016/j.jcat.2021.12.024
    [13] 士丽敏, 储伟, 邓思玉. La促进CuCo催化剂上合成气转化制低碳醇的研究[J]. 燃料化学学报(中英文), 2012, 40 (04): 436-440.436-440.

    (SHI Limin, CHU Wei, DENG Siyu. Studies on higher alcohols from syngas over the La promoted CuCo catalysts[J]. J Fuel Chem Technol, 2012, 40 (04):)
    [14] KIM M-J, CHAE H-J, HA K-S, et al. Hydrogenation of carbon monoxide to higher alcohols over ordered mesoporous carbon nanoparticle-supported Rh-based catalysts[J]. J Porous Mater,2014,21(4):365−377. doi: 10.1007/s10934-014-9782-y
    [15] 续开壮, 吕倩, 曹逢海, 等. Ce改性的Rh-UiO-66-Zr催化剂对合成气制乙醇的影响[J]. 燃料化学学报(中英文),2022,50(12):1591−1600.

    XU Kaizhuang, LÜ Qian, CAO Fenghai, et al. Effect of Ce introduced Rh-UiO-66-Zr catalyst in syngas converting to ethanol[J]. J Fuel Chem Technol,2022,50(12):1591−1600.
    [16] PREIKSCHAS P, BAUER J, KNEMEYER K, et al. Formation, dynamics, and long-term stability of Mn- and Fe-promoted Rh/SiO2 catalysts in CO hydrogenation[J]. Catal Sci Technol,2021,11(17):5802−5815. doi: 10.1039/D1CY00421B
    [17] ANASHKIN Y V, ISHUTENKO D I, MAXIMOV V V, et al. Effect of carrier properties on the activity of supported KCoMoS catalysts in the synthesis of alcohol from syngas[J]. React Kinet Mech Cat,2019,127(1):301−314. doi: 10.1007/s11144-019-01580-2
    [18] SAMY O, EL MOUTAOUAKIL A. A review on MoS2 energy applications: Recent developments and challenges[J]. Energies,2021,14(15):4586−4606. doi: 10.3390/en14154586
    [19] KARIM S S, SUDAIS A, SHAH M S, et al. A contemplating review on different synthesis methods of 2D-molybdenum disulfide (MoS2) nanosheets[J]. Fuel,2023,351:128923. doi: 10.1016/j.fuel.2023.128923
    [20] 李莹, 赵璐, 刘晓展, 等. 低温等离子体制备低碳醇合成用KNiMo基催化剂及其结构性能表征[J]. 燃料化学学报,2019,47(5):513−522. doi: 10.1016/S1872-5813(19)30023-4

    LI Ying, ZHAO Lu, LIU Xiaozhan, et al. Preparation of KNiMo-based catalysts by using non-thermal plasma and their catalytic performance in the synthesis of higher alcohols from syngas[J]. J Fuel Chem Technol,2019,47(5):513−522. doi: 10.1016/S1872-5813(19)30023-4
    [21] WANG W, YUE J, CHU Y, et al. Co-doped amorphous MoSx supported on CuO/CM (Cu mesh) with enhanced photocatalytic activity for ammonia synthesis[J]. Colloid Surface A,2022,643:128787. doi: 10.1016/j.colsurfa.2022.128787
    [22] ZAMAN S F, SMITH K J. Synthesis gas conversion over a Rh–K–MoP/SiO2 catalyst[J]. Catal Today,2011,171(1):266−274. doi: 10.1016/j.cattod.2011.02.017
    [23] SHOU H, DAVIS R J. Reactivity and in situ X-ray absorption spectroscopy of Rb-promoted Mo2C/MgO catalysts for higher alcohol synthesis[J]. J Catal,2011,282(1):83−93. doi: 10.1016/j.jcat.2011.05.028
    [24] QU H, HE S, SU Y, et al. MoSe2: a promising non-noble metal catalyst for direct ethanol synthesis from syngas[J]. Fuel,2020,281:118760. doi: 10.1016/j.fuel.2020.118760
    [25] LI J, HU R, QU H, et al. Radio-frequency thermal plasma-induced novel chainmail-like core-shell MoO2 as highly stable catalyst for converting syngas to higher alcohols[J]. Appl Catal B: Environ,2019,249:63−71. doi: 10.1016/j.apcatb.2019.02.060
    [26] LEFFERTS L. Leveraging expertise in thermal catalysis to understand plasma catalysis[J]. Angew Chem Int Ed, 2024, 63 (10). doi. org/10.1002/anie. 202305322.LEFFERTS L. Leveraging expertise in thermal catalysis to understand plasma catalysis[J]. Angew Chem Int Ed, 2024, 63 (10). doi.org/10.1002/anie.202305322.
    [27] WANG Z, ZHANG Y, NEYTS E C, et al. Catalyst preparation with plasmas: How does it work?[J]. ACS Catal,2018,8(3):2093−2110. doi: 10.1021/acscatal.7b03723
    [28] MEHTA P, BARBOUN P, GO D B, et al. Catalysis enabled by plasma activation of strong chemical bonds: A review[J]. ACS Energy Lett,2019,4(5):1115−1133. doi: 10.1021/acsenergylett.9b00263
    [29] 徐慧远, 储伟, 邓思玉. 射频等离子体技术制备合成低碳醇用新型Cu-Co/SiO2催化剂[J]. 物理化学学报,2010,26(2):345−349. doi: 10.3866/PKU.WHXB20100228

    XU HuiYuan, CHU Wei, DENG SiYu. Preparation of copper-cobalt-silicon catalysts for higher alcohol synthesis by glow discharge plasma[J]. Acta Phys Chim Sin,2010,26(2):345−349. doi: 10.3866/PKU.WHXB20100228
    [30] 王亚文, 侯亮, 屈皓, 等. 射频等离子体诱导合成MoO2-Mo2N复合催化剂及其在合成气制低碳醇中的应用[J]. 陕西师范大学学报(自然科学版),2019,47(1):60−67.

    WANG Yawen, HOU Liang, QU Hao, et al. Radio frequency plasma induced synthesis of MoO2-Mo2N catalyst and its application in synthesis of higher alcohols from syngas[J]. J Shaanxi Norm Univ, Nat Sci Ed,2019,47(1):60−67.
    [31] JIAO H, WANG B, ZHANG Y. Effect of DBD plasma treatment on activity of Mo-based sulfur-resistant methanation catalyst[J]. Chem Phys Chem, 2024. doi: org/10.1002/cphc. 202301002.
    [32] REN Z, CAO Y, YIN X, et al. Ordered mesoporous Mg-modified silica to confine MoS2 slabs with high sulfidation and dispersion for higher alcohol synthesis via CO hydrogenation[J]. Fuel,2024,363:130915. doi: 10.1016/j.fuel.2024.130915
    [33] 孙付琳, 赵璐, 王乾浩, 等. K-Ni-Mo基催化剂的水热还原法制备及用于合成气制低碳醇反应性能研究[J]. 燃料化学学报(中英文),2022,50(8):1004−1013. doi: 10.1016/S1872-5813(21)60015-X

    SUN Fulin, ZHAO Lu, WANG Qianhao, et al. Hydrothermal reduction synthesis of K-Ni-Mo-based catalyst and its catalytic performance for higher alcohol synthesis from syngas[J]. J Fuel Chem Technol,2022,50(8):1004−1013. doi: 10.1016/S1872-5813(21)60015-X
    [34] HOU X, DU H, SONG M, et al. Electron transition enhanced in-situ co-reduction mechanism enabling high-capacity and stable lithium storage for MoO3-x anode[J]. Compos Part B-Eng,2024,271:111174. doi: 10.1016/j.compositesb.2023.111174
    [35] DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model[J]. J Catal,1994,149(2):414−427. doi: 10.1006/jcat.1994.1308
    [36] CRIST B V. XPS in industry—Problems with binding energies in journals and binding energy databases[J]. J Electron Spectrosc,2019,231:75−87. doi: 10.1016/j.elspec.2018.02.005
    [37] HUANG C, ZHU C, ZHANG M, et al. Design of efficient ZnO/ZrO2 modified CuCoAl catalysts for boosting higher alcohol synthesis in syngas conversion[J]. Appl Catal B: Environ,2022,300:120739. doi: 10.1016/j.apcatb.2021.120739
    [38] LUK H T, MONDELLI C, FERRé D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev,2017,46(5):1358−1426. doi: 10.1039/C6CS00324A
    [39] ZHAO L, LI Y, LIU X, et al. Low-temperature synthesis of high-performance nano-MoS2-based catalyst via non-thermal plasma for higher alcohol synthesis from syngas[J]. Catal Today,2020,355:17−25. doi: 10.1016/j.cattod.2019.01.069
    [40] SHI X, YU H, GAO S, et al. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel,2017,210:241−248. doi: 10.1016/j.fuel.2017.08.064
    [41] ZHAO L, MU X, YU M, et al. A novel catalyst for higher alcohol synthesis from syngas: Co-Zn supported on Mn-Al oxide[J]. Fuel Process Technol,2018,177:16−29. doi: 10.1016/j.fuproc.2018.04.006
    [42] ATHARIBOROUJENY M, RAUB A, IABLOKOV V, et al. Competing Mechanisms in CO Hydrogenation over Co-MnOx Catalysts[J]. ACS Catal,2019,9(6):5603−5612. doi: 10.1021/acscatal.9b00967
    [43] FREDRIKSEN G R, BLEKKAN E A, SCHANKE D, et al. CO hydrogenation over supported cobalt catalysts: FTIR and gravimetric studies[J]. Chem Eng Technol,1995,18(2):125−231. doi: 10.1002/ceat.270180207
    [44] SONG P, WANG J, WANG X, et al. The active pairs of Co-Co2C adjusted by La-doped CaTiO3 with perovskite phase for higher alcohol synthesis from syngas[J]. Chem Eng J,2022,439:135635. doi: 10.1016/j.cej.2022.135635
    [45] RIETH A J, HUNTER K M, DINCĂ M, et al. Hydrogen bonding structure of confined water templated by a metal-organic framework with open metal sites[J]. Nat Commun,2019,10(1):4771−4778. doi: 10.1038/s41467-019-12751-z
    [46] HE Z, CUI M, QIAN Q, et al. Synthesis of liquid fuel via direct hydrogenation of CO2[J]. PNAS,2019,116(26):12654−12659. doi: 10.1073/pnas.1821231116
    [47] RASKó J, KISS J. Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3[J]. Appl Catal A-General,2005,287(2):252−260. doi: 10.1016/j.apcata.2005.04.003
    [48] KATTEL S, YAN B, YANG Y, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. J Am Chem Soc,2016,138(38):12440−12450. doi: 10.1021/jacs.6b05791
    [49] QIAN W, WANG H, XU Y, et al. In situ DRIFTS study of homologous reaction of methanol and higher alcohols synthesis over Mn promoted Cu-Fe catalysts[J]. Ind Eng Chem Res,2019,58(16):6288−6297. doi: 10.1021/acs.iecr.9b00355
    [50] PARK T Y, NAM I-S, KIM Y G. Kinetic analysis of mixed alcohol synthesis from syngas over K/MoS2 Catalyst[J]. Ind Eng Chem Res,1997,36(12):5246−5257. doi: 10.1021/ie9605701
    [51] AO M, PHAM G H, SUNARSO J, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catal,2018,8(8):7025−7050. doi: 10.1021/acscatal.8b01391
    [52] XIANG M, ZOU J, LI D, et al. Nickel and potassium co-modified β-Mo2C catalyst for CO conversion[J]. J Nat Gas Chem,2009,18(2):183−186. doi: 10.1016/S1003-9953(08)60103-6
    [53] CHAI S H, SCHWARTZ V, HOWE J Y, et al. Graphitic mesoporous carbon-supported molybdenum carbides for catalytic hydrogenation of carbon monoxide to mixed alcohols[J]. Micropor Mesopor Mat,2013,170:141−149. doi: 10.1016/j.micromeso.2012.11.025
    [54] SURISETTY V R, TAVASOLI A, DALAI A K. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Appl Catal A-General,2009,365(2):243−251. doi: 10.1016/j.apcata.2009.06.017
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  22
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 修回日期:  2024-04-26
  • 录用日期:  2024-04-26
  • 网络出版日期:  2024-06-04

目录

    /

    返回文章
    返回