留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淀粉类餐厨垃圾化学转化制备高值化学品

张璇 李克明 黄志濠 黄耀兵 杨世关 李继红 王体朋

张璇, 李克明, 黄志濠, 黄耀兵, 杨世关, 李继红, 王体朋. 淀粉类餐厨垃圾化学转化制备高值化学品[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024028
引用本文: 张璇, 李克明, 黄志濠, 黄耀兵, 杨世关, 李继红, 王体朋. 淀粉类餐厨垃圾化学转化制备高值化学品[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024028
ZHANG Xuan, LI Keming, HUANG Zhihao, HUANG Yaobing, YANG Shiguan, LI Jihong, WANG Tipeng. Production of high-value chemicals from starch food waste by chemical conversions[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024028
Citation: ZHANG Xuan, LI Keming, HUANG Zhihao, HUANG Yaobing, YANG Shiguan, LI Jihong, WANG Tipeng. Production of high-value chemicals from starch food waste by chemical conversions[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024028

淀粉类餐厨垃圾化学转化制备高值化学品

doi: 10.19906/j.cnki.JFCT.2024028
基金项目: 国家自然科学基金 (52276189, 51821004)资助
详细信息
    通讯作者:

    E-mail: hyb123@mail.ustc.edu.cn

  • #:共同第一作者
  • 中图分类号: TK6

Production of high-value chemicals from starch food waste by chemical conversions

Funds: The project was supported by National Natural Science Foundation of China (52276189, 51821004).
  • 摘要: 餐厨垃圾是城市垃圾的主要组成部分,同时具有危害性与资源性双重属性。工业化餐厨垃圾处理方法主要以填埋、焚烧发电和厌氧发酵为主,高值化利用方法和技术仍然欠缺,严重制约了餐厨垃圾的资源化发展。本工作首先介绍了淀粉类餐厨垃圾的特性、现有处理技术及预处理方法,并对当前技术手段的优劣进行阐述。最后,介绍了淀粉类餐厨垃圾制备葡萄糖、5-羟甲基糠醛、乙酰丙酸(酯)、γ-戊内酯和乳酸(酯)等高附加值化学品的方法和反应机理,归纳并总结了化学法催化淀粉类餐厨垃圾转化制备高附加值化学品依旧存在的问题与不足。尽管如此,化学转化法是实现淀粉类餐厨垃圾绿色、资源化利用的有效手段之一。
    1)  #:共同第一作者
  • 图  1  直链淀粉和支链淀粉结构示意图

    Figure  1  Structure of linear and branched starch

    图  2  厨余垃圾组成及处理利用方式

    Figure  2  Composition and treatment of food wastes

    图  3  酸催化淀粉水解制葡萄糖示意图

    Figure  3  Acid-catalyzed hydrolysis of starch to glucose

    图  4  淀粉制备HMF的反应路径示意图

    Figure  4  Reaction pathway for the preparation of HMF from starch

    图  5  淀粉水解生产乙酰丙酸反应路径示意图

    Figure  5  Reaction pathway for starch hydrolysis to produce LA

    图  6  淀粉醇解制备乙酰丙酸乙酯反应路径示意图

    Figure  6  Reaction pathway for starch alcoholysis to produce ethyl levulinate

    图  7  淀粉转化制备GVL串联反应路径示意图

    Figure  7  Tandem reaction pathway for the conversion of starch to produce GVL

    图  8  淀粉转化制备乳酸(酯)的反应路径示意图

    Figure  8  Reaction pathway for conversion of starch to produce lactic acid (ester)

  • [1] 潘翔, 张铭, 张焦, 等. 餐厨垃圾厌氧处理技术研究进展[J]. 广东化工,2024,51(5):114−115+113. doi: 10.3969/j.issn.1007-1865.2024.05.033.

    PANG Xiang, ZHANG Ming, ZHANG Jiao, et al. Research progress of food waste anaerobic digestion technology[J]. Guangdong Chemical Industry,2024,51(5):114−115+113. doi: 10.3969/j.issn.1007-1865.2024.05.033.
    [2] 辛梓弘. 餐厨垃圾处理技术研究[J]. 当代化工研究,2022,09:63−65. doi: 10.3969/j.issn.1672-8114.2022.06.021

    XIN Zihong. Study on food waste treatment technologies[J]. Modern Chemical Research,2022,09:63−65. doi: 10.3969/j.issn.1672-8114.2022.06.021
    [3] 邓松圣, 冷夕杜, 戴飞. 餐厨垃圾处理的恶臭气体产生与控制对策探讨[J]. 资源节约与环保,2022,03:77−80. doi: 10.3969/j.issn.1673-2251.2022.10.020

    DENG Songsheng, LENG Xidu, DAI Fei. Discussion on the generation and control measures of odorous gases in food waste treatment[J]. Resources Economization & Environmental Protection,2022,03:77−80. doi: 10.3969/j.issn.1673-2251.2022.10.020
    [4] KUMAR V B, PULIDINDI I N, GEDANKEN A. Selective conversion of starch to glucose using carbon based solid acid catalyst[J]. Renew Energy,2015,78:141−145. doi: 10.1016/j.renene.2014.12.070
    [5] 崔文静, 陆敏博. 餐厨垃圾处理现状及今后发展趋势[J]. 广东化工,2021,48(19):140−141. doi: 10.3969/j.issn.1007-1865.2021.19.066

    CUI Wenjing, LU Minbo. The present disposing situation and development trend of kitchen waste[J]. Guangdong Chemical Industry,2021,48(19):140−141. doi: 10.3969/j.issn.1007-1865.2021.19.066
    [6] 易志刚. 餐厨垃圾收运与资源化利用研究进展[J]. 中国资源综合利用,2021,39(12):116−119+125. doi: 10.3969/j.issn.1008-9500.2021.12.032

    YI Zhigang. Research progress on the collection, transportation and resource utilization of kitchen waste[J]. China Resources Comprehensive Utilization,2021,39(12):116−119+125. doi: 10.3969/j.issn.1008-9500.2021.12.032
    [7] 周俊, 王梦瑶, 王改红, 等. 餐厨垃圾资源化利用技术研究现状及展望[J]. 生物资源,2020,42(1):87−96.

    ZHOU Jun, WANG Mengyao, WANG gaihong, et al. Research status and prospect of food waste utilization technology[J]. Biotic Resources,2020,42(1):87−96.
    [8] 王丽华, 李宇宸, 韩聪. 城市餐厨垃圾处理技术分析及思路分析[J]. 中国资源综合利用,2018,12(36):73−75. doi: 10.3969/j.issn.1008-9500.2018.12.022

    WANG Lihua, LIU Yuchen, HAN Cong. Technical analysis and thinking analysis of urban kitchen waste treatment technology[J]. China Resources Comprehensive Utilization,2018,12(36):73−75. doi: 10.3969/j.issn.1008-9500.2018.12.022
    [9] 陈必鸣. 餐厨垃圾预处理技术综述[J]. 环境卫生工程,2015,23(5):10−12. doi: 10.3969/j.issn.1005-8206.2015.05.004

    CHEN Biming. Food waste pretreatment technologies[J]. Environmental Sanitation Engineering,2015,23(5):10−12. doi: 10.3969/j.issn.1005-8206.2015.05.004
    [10] 李游, 刘喜, 赵石铁, 等. 餐厨垃圾资源化处理预处理方案对比分析[J]. 环境与发展,2019,31(11):218−219+222.

    LI You, LIU Xi, ZHAO Shitie, et al. Comparative analysis of the pretreatment schemes for recycling treatment of food waste[J]. Environment and Development,2019,31(11):218−219+222.
    [11] HUANG Y B, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chem,2013,15:1095−1111. doi: 10.1039/c3gc40136g
    [12] ONDA A. Selective hydrolysis of cellulose and polysaccharides into sugars by catalytic hydrothermal method using sulfonated activated-carbon[J]. J Jpn Pet Inst,2012,55(2):73−86. doi: 10.1627/jpi.55.73
    [13] RAJKUMAR T, RAO G R. Porous hydrous zirconia supported 12-tungstophosphoric acid catalysts for liquid-phase esterification of 2-ethyl-1-hexanol[J]. J Mol Catal A Chem,2008,295:1−9. doi: 10.1016/j.molcata.2008.08.008
    [14] ZHU S, LI J, CHENG F, et al. Forming a Cu-based catalyst for efficient hydrogenation conversion of starch into glucose[J]. Catalysts,2024,14:132. doi: 10.3390/catal14020132
    [15] KUMAR V B, PULIDINI A, Indra N, GEDANKEN A. Glucose production from potato peel waste under microwave irradiatio[J]. J Mol Catal A Chem,2016,417:163−167. doi: 10.1016/j.molcata.2016.03.025
    [16] YU I K M, TSANG D C W, YIP A C K, et al. Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps[J]. Bioresource Technol,2016,219:338−347. doi: 10.1016/j.biortech.2016.08.002
    [17] BOZELL J J, PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited[J]. Green Chem,2010,12:539−554. doi: 10.1039/b922014c
    [18] FAN W, VERRIER C, QUENEAU Y, et al. 5-Hydroxymethylfurfural (HMF) in organic synthesis: A review of its recent applications towards fine chemicals[J]. Curr Org Synth,2019,16:583−614. doi: 10.2174/1570179416666190412164738
    [19] MUKHERJEE A, DUMONT M J, RAGHAVAN V. Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities[J]. Biomass Bioenergy,2015,72:143−183. doi: 10.1016/j.biombioe.2014.11.007
    [20] COVADONGA L T, ALMUDENA L, BEATRIZ C, et al. Microwave heating for the catalytic conversion of melon rind waste into biofuel precursors[J]. J Clean Prod,2016,138:59−69. doi: 10.1016/j.jclepro.2016.03.122
    [21] YU I K M, TSANG D C W, CHEN S S, et al. Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste[J]. Bioresource Technol,2017,245:456−462. doi: 10.1016/j.biortech.2017.08.170
    [22] XIONG X, YU I K M, CHEN S S, et al. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration[J]. Catal Today,2018,314:52−61. doi: 10.1016/j.cattod.2018.02.034
    [23] PARSHETTI G K. , SURYAHARMA M S, PHAM T P T, et al. Heterogeneous catalyst-assisted thermochemical conversion of food waste biomass into 5-hydroxymethylfurfural[J]. Bioresource Technol,2015,178:19−27. doi: 10.1016/j.biortech.2014.10.066
    [24] YU I K M, TSANG D C W, YIP A C K, et al. Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis[J]. Chemosphere,2017,184:1099−1107. doi: 10.1016/j.chemosphere.2017.06.095
    [25] YU I K M, TSANG D C W, YIP A C K, et al. Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity[J]. Bioresource Technol,2017,237:222−230. doi: 10.1016/j.biortech.2017.01.017
    [26] YU I K M, TSANG D C W, YIP A C K, et al. Contrasting roles of maleic acid in controlling kinetics and selectivity of Sn(IV)- and Cr(III)-catalyzed hydroxymethylfurfural synthesis[J]. ACS Sustain Chem Eng,2018,6:14264−14274. doi: 10.1021/acssuschemeng.8b02931
    [27] YU I K M, ONG K L, TSANG D C W, et al. Chemical transformation of food and beverage waste-derived fructose to hydroxymethylfurfural as a value-added product[J]. Catal Today,2018,314:70−77. doi: 10.1016/j.cattod.2018.01.011
    [28] CAO L, YU I K M, TSANG D C W, et al. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar[J]. Bioresource Technol,2018,252:76−82. doi: 10.1016/j.biortech.2017.12.098
    [29] CAO L, YU I K M, TSANG D C W, et al. Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural[J]. Bioresource Technol,2018,267:242−248. doi: 10.1016/j.biortech.2018.07.048
    [30] FLANNELLY T, LOPES M, KUPIANINE L, et al. Non-stoichiometric formation of formic and levulinic acids from the hydrolysis of biomass derived hexose carbohydrates[J]. RSC Adv,2016,6:5797−5804. doi: 10.1039/C5RA25172A
    [31] PILEDIS F D, TITIRICI M M. Levulinic acid biorefineries: new challenges for efficient utilization of biomass[J]. ChemSusChem,2016,9:562−582. doi: 10.1002/cssc.201501405
    [32] RITTER S. Biorefinery gets ready to deliver the goods[J]. Chem Eng News,2006,84:34−47.
    [33] CHEN S S, YU I K M, TSANG D C W, et al. Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects[J]. Chem Eng J,2017,327:328−335. doi: 10.1016/j.cej.2017.06.108
    [34] DUTTA S, YU I K M, FAN J, et al. Critical factors for levulinic acid production from starch-rich food waste: solvent effects, reaction pressure, and phase separation[J]. Green Chem,2022,24:163−175. doi: 10.1039/D1GC01948A
    [35] XU Z M, LUO J Y, HUANG Y B. Recent advances in the chemical valorization of cellulose and its derivatives into ester compounds[J]. Green Chem,2022,24:3895−3921. doi: 10.1039/D2GC00377E
    [36] LUIGI B, GEORGIA A, CAMILLA B, et al. Lewis-Brønsted acid catalysed ethanolysis of the organic fraction of municipal solid waste for efficient production of biofuels[J]. Bioresource Technol,2018,266:297−305. doi: 10.1016/j.biortech.2018.06.110
    [37] DU X L, HE L, ZHAO S, et al. Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts[J]. Angew Chem Int Ed,2011,123:7961−7965. doi: 10.1002/ange.201100102
    [38] ISTVAN T H, HASAN M, VIKTORIA F, et al. γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals[J]. Green Chem,2008,10:238−242. doi: 10.1039/B712863K
    [39] BOND J Q, ALONSO D M, WANG D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327:1110−1114. doi: 10.1126/science.1184362
    [40] MOHAMMAD G A, ADAM D, REGINA P. Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis[J]. Green Chem,2014,16:1358−1364. doi: 10.1039/C3GC41803K
    [41] DU X, BI Q, LIU Y, et al. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1, 4-pentanediol or 2-methyltetrahydrofuran[J]. Green Chem,2012,14:935−939. doi: 10.1039/c2gc16599f
    [42] HUANG Y B, YANG T, LUO Y J, et al. Simple and efficient conversion of cellulose to γ-valerolactone through an integrated alcoholysis/transfer hydrogenation system using Ru and aluminium sulfate catalysts[J]. Catal Sci Technol,2018,8:6252−6262. doi: 10.1039/C8CY01971A
    [43] CUI J L, TAN J J, DENG T S, et al. Direct conversion of carbohydrates to γ-valerolactone facilitated by a solvent effect[J]. Green Chem,2015,17:3084−3089. doi: 10.1039/C5GC00110B
    [44] REN H F, ZHU D L, JI F L, et al. One-pot conversion of carbohydrates into gamma-valerolactone under the coordination of heteropoly acid based ionic liquid and Ru/ZrO2 in water media[J]. J Chem Technol Biotechnol,2019,94(7):2355−2363. doi: 10.1002/jctb.6031
    [45] JIN F M, ENOMOTO H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions[J]. Energ Environ Sci,2011,4:382−397. doi: 10.1039/C004268D
    [46] DATTA R, TSAI S P, BONSIGNORE P, et al. Technological and economic potential of poly(lactic acid) and lactic acid derivatives[J]. FEMS Microbiol Rev,1995,16:221−231. doi: 10.1111/j.1574-6976.1995.tb00168.x
    [47] MARTIN S H, SHUNMUGAVEL S, ESBEN T. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science,2010,328:602−605. doi: 10.1126/science.1183990
    [48] YANG X M, LIU Y, LI X X, et al. Synthesis of Sn-containing nanosized beta zeolite as efficient catalyst for transformation of glucose to methyl lactate[J]. Acs Sustain Chem Eng,2018,6:8256−8265. doi: 10.1021/acssuschemeng.8b00177
    [49] SÁNVHEZ C, SERRANO L, PONTE R L, et al. Bread residues conversion into lactic acid by alkaline hydrothermal treatments[J]. Chem Eng J,2014,250:326−330. doi: 10.1016/j.cej.2014.04.023
    [50] YANG L, YANG X K, TIAN E, et al. Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15[J]. J Catal,2016,333:207−216. doi: 10.1016/j.jcat.2015.10.013
  • 加载中
图(8)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  42
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-28
  • 修回日期:  2024-05-06
  • 录用日期:  2024-05-07
  • 网络出版日期:  2024-06-04

目录

    /

    返回文章
    返回