留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫掺杂碳纳米管催化单乙醇胺溶液解吸CO2机理的理论研究

任莹莹 刘均隆 成怀刚 高阳艳

任莹莹, 刘均隆, 成怀刚, 高阳艳. 硫掺杂碳纳米管催化单乙醇胺溶液解吸CO2机理的理论研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024030
引用本文: 任莹莹, 刘均隆, 成怀刚, 高阳艳. 硫掺杂碳纳米管催化单乙醇胺溶液解吸CO2机理的理论研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024030
REN Yingying, LIU Junlong, CHENG Huaigang, GAO Yangyan. Theoretical study on the catalysis mechanism of sulfur-doped carbon nanotubes in CO2 desorption from monoethanolamine solution[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024030
Citation: REN Yingying, LIU Junlong, CHENG Huaigang, GAO Yangyan. Theoretical study on the catalysis mechanism of sulfur-doped carbon nanotubes in CO2 desorption from monoethanolamine solution[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024030

硫掺杂碳纳米管催化单乙醇胺溶液解吸CO2机理的理论研究

doi: 10.19906/j.cnki.JFCT.2024030
基金项目: 国家自然科学基金 (宽温域SCR催化剂上烟气中Hg0的催化氧化机理研究)资助
详细信息
    通讯作者:

    Tel: 13546390472 , E-mail: gaoyangyan@sxu.edu.cn

  • 中图分类号: O64

Theoretical study on the catalysis mechanism of sulfur-doped carbon nanotubes in CO2 desorption from monoethanolamine solution

Funds: The project was supported by National Natural Science Foundation of China ( Catalytic oxidation mechanism of Hg0 in flue gas over wide temperature range SCR catalysts).
  • 摘要: 醇胺法吸收CO2是目前最成熟的碳捕集技术,虽然吸收效率高、稳定性好,但过高的解吸能耗限制其大规模工业推广应用。催化解吸提供了降低CO2解吸能耗的可能性。本工作利用基于密度泛函理论(DFT)的量子化学模拟方法,探索了硫掺杂碳纳米管(S-CNTs)催化单乙醇胺(MEA)溶液吸收-解吸CO2反应机理。通过过渡态搜索发现,以S-CNTs为催化剂的解吸过程,决速步骤的反应能垒降低了1.15 kcal/mol。局部态密度分析表明(PDOS),产物氨基甲酸酯吸附质子化胺MEACOO-_MEAH+和吸收中间产物MEA+COO中的C、N、O原子在CNTS和S-CNTs表面吸附时PDOS差距较大。此外,与未改性CNTs相比,S-CNTS上电荷密度增加,掺杂的硫原子附近碳原子具有明显的电负性。相比于CNTs,吸收中间产物MEA+COO和吸收产物MEACOO-MEAH+均向S-CNTs转移了更多的电荷,表明更多的电荷转移有利于CO2的释放。本工作旨在通过CO2催化解吸机理的研究为催化剂的设计提供一定的理论依据。
  • 图  1  S-CNTS结构示意图

    Figure  1  Schematic diagram of S-doped CNTS structure

    yellow ball represents Satoms, gray represents Catoms.

    图  2  (a)MEA-CO2和MEA-CO2-CNTS/ S-CNTS催化反应路径的能量变化(b)对应的结构示意图

    Figure  2  (a) Energy changes in the catalytic reaction path of MEA-CO2 and MEA-CO2-CNTS / S-CNTS (b) Schematic diagram of the corresponding structure

    图  3  (a) MEA-CO2-CNTS/S-CNTS催化反应路径结构的静电势图 和(b) 电荷密度图 (c) 差分电荷密度图

    Figure  3  (a) Electrostatic potential diagram of the structure of the catalytic reaction pathway of MEA-CO2-CNTS/S-CNTS and (b) Charge density diagram (c) Differential charge density diagramR1 / R refers to the reactant monoethanolamine solution and CO2 in the catalytic desorption reaction, IM 1 refers to the intermediate zwitterion ZW in the catalytic desorption reaction, IM 2 refers to the intermediate ZW and single ethanolamine solution in the catalytic desorption reaction, P1 / P refers to the products carbamate and protonation amine, TS1 and TS2 are transition states.

    图  4  (a)CNTS/S-CNTS结构中C、S等原子的PDOS图(b)CNTS/S-CNTS_R1催化反应结构中C、N、O等原子的PDOS图

    Figure  4  PDOS plots of C, N, O and other atoms in the structure of the CNTS/S-CNTS_R1 catalytic reaction and PDOS maps of C and S and other atoms in the CNTS / S-CNTS structure(The red ball represents oxygen atoms, the gray ball represents C atoms, the yellow ball represents S atoms,the white ball represents H atoms, and the blue ball represents N atoms)

    图  5  CNTS/S-CNTS_IM1催化反应结构中C、N、O等原子的PDOS图

    Figure  5  XX

    图  6  CNTS/S-CNTS_P1催化反应结构中C、N、O等原子的PDOS图

    Figure  6  XX

    图  7  MEA-CO2-S-CNTS催化反应路径结构中C、S、O原子的PDOS图和 精确分子模型系空间充满式模型(Corey-Pauling-koltun,CPk)模式

    Figure  7  The PDOS diagram of C, S and O atoms in structure of MEA-CO2-S-CNTS catalytic reaction pathway and the exact molecular model of S-CNTS adsorption structure are space-filled model (Corey-Pauling-koltun, CPk) mode (Red balls represent oxygen atoms, gray balls represent carbon atoms,yellow balls represent sulfur atoms, and white balls represent hydrogen atoms)

    表  1  不同反应物/吸收产物/中间态吸附在碳纳米管/S掺杂碳纳米管上的吸附能

    Table  1  Adsorption energy of different reactants/desorption products/intermediate states adsorbed on carbon nanotubes/S-doped carbon nanotubes

    Materials MEA CO2 MEACOO MEAH+ MEA_CO2 MEA+COO MEA+COO−_MEA MEACOO−_MEAH+
    Ead(CNTs)/(kcal·mol−1) −3.728 −1.489 −57.228 −5.582 −3.528 −2.700 −3.531
    Ead(S-CNTs)/(kcal·mol−1) −2.229 −0.242 −26.322 −56.306 −2.484 −2.748 −2.748 −5.846
    注:碳纳米管吸附了吸收产物MEACOO-之后,然后经过结构优化发现MEACOO分解成了MEA和CO2
    下载: 导出CSV
  • [1] ASGHAR U, RAFIQ S, ANWAR A, et al. Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion[J]. J Environ Chem Eng,2021,9(5):106064. doi: 10.1016/j.jece.2021.106064
    [2] WANG T, PARk A-H A, SHI Y, et al. Carbon Dioxide Capture and Utilization—Closing the Carbon Cycle[J]. Energy Fuels,2019,33(3):1693−1693. doi: 10.1021/acs.energyfuels.8b04502
    [3] LIANG Z, FU k, IDEM R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chin J Chem Eng,2016,24(2):278−288. doi: 10.1016/j.cjche.2015.06.013
    [4] DZIEJARSkI B, SERAFIN J, ANDERSSON k, et al. CO2 Capture Materials: A Review of Current Trends and Future Challenges[J]. Mater Today Sustain, 2023: 100483.
    [5] WASEEM M, AL-MARZOUQI M, GHASEM N. A review of catalytically enhanced CO2-rich amine solutions regeneration[J]. J. Environ Chem Eng,2023,11(4):110188. doi: 10.1016/j.jece.2023.110188
    [6] BHATTI U H, SIVANESAN D, LIM D H, et al. Metal oxide catalyst-aided solvent regeneration: A promising method to economize post-combustion CO2 capture process[J]. J Taiwan Inst Chem. Eng,2018,93:150−157. doi: 10.1016/j.jtice.2018.05.029
    [7] SRISANG W, POURYOUSEFI F, OSEI P A, et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture[J]. Chem Eng Sci,2017,170:48−57. doi: 10.1016/j.ces.2017.01.049
    [8] ZHANG X, LIU H, LIANG Z, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Applied Energy,2018,229:562−576. doi: 10.1016/j.apenergy.2018.07.035
    [9] WANG T, YU W, LIU F, et al. Enhanced CO2 Absorption and Desorption by Monoethanolamine (MEA)-Based Nanoparticle Suspensions[J]. Ind Eng Chem. Res,2016,55(28):7830−7838. doi: 10.1021/acs.iecr.6b00358
    [10] LAI Q, TOAN S, ASSIRI M A, et al. Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture[J]. Nat Commun, 2018, 9(1).
    [11] LI X, XU Q, LIU Z, et al. Nonacid Carbon Materials as Catalysts for Monoethanolamine Energy-Efficient Regeneration[J]. Environ Sci Technol, 2023: acs. est. 3c01459.
    [12] YI X, LIU X, FANG J, et al. An atomic/molecular-level strategy for the design of a preferred nitrogen-doped carbon nanotube cathode for Li-O2 batteries[J]. Applied Surface Science,2023,615:156367. doi: 10.1016/j.apsusc.2023.156367
    [13] kATTA S S, YADAV S, PRATAP SINGH A, et al. Investigation of pristine and B/N/Pt/Au/Pd doped single-walled carbon nanotube as phosgene gas sensor: A first-principles analysis[J]. Applied Surface Science,2022,588:152989. doi: 10.1016/j.apsusc.2022.152989
    [14] ESRAFILI M D, SAEIDI N. Carbon-doped boron nitride nanosheet as a promising catalyst for N2O reduction by CO or SO2 molecule: A comparative DFT study[J]. Applied Surface Science,2018,444:584−589. doi: 10.1016/j.apsusc.2018.03.107
    [15] LI X, XUE Q, CHANG X, et al. Effects of Sulfur Doping and Humidity on CO2 Capture by Graphite Split Pore: A Theoretical Study[J]. ACS Appl Mater Interfaces,2017,9(9):8336−8343. doi: 10.1021/acsami.6b14281
    [16] SEEMA H, kEMP k C, LE N H, et al. Highly selective CO2 capture by S-doped microporous carbon materials[J]. Carbon,2014,66:320−326. doi: 10.1016/j.carbon.2013.09.006
    [17] MESHkAT S S, GHASEMY E, RASHIDI A, et al. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front Environ Sci. Eng,2021,15(5):109. doi: 10.1007/s11783-021-1397-3
    [18] DENIS P A, FACCIO R, MOMBRU A W. Is It Possible to Dope Single-Walled Carbon Nanotubes and Graphene with Sulfur?[J]. ChemPhysChem,2009,10(4):715−722. doi: 10.1002/cphc.200800592
    [19] ZHOU J. First-principles study of the effects of Si doping on geometric and electronic structure of closed carbon nanotube[J]. Chinese Science Bulletin,2005,50(17):1823. doi: 10.1360/982005-470
    [20] QI C, MA X, NING G, et al. Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries[J]. Carbon,2015,92:245−253. doi: 10.1016/j.carbon.2015.04.028
    [21] SEREDYCH M, LÁSZLÓ k, BANDOSZ T J. Sulfur‐Doped Carbon Aerogel as a Metal-Free Oxygen Reduction Catalyst[J]. ChemCatChem,2015,7(18):2924−2931. doi: 10.1002/cctc.201500192
    [22] SEREDYCH M, LÁSZLÓ k, RODRÍGUEZ-CASTELLÓN E, et al. S-doped carbon aerogels/GO composites as oxygen reduction catalysts[J]. Journal of Energy Chemistry,2016,25(2):236−245. doi: 10.1016/j.jechem.2016.01.005
    [23] DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys,2000,113(18):7756−7764. doi: 10.1063/1.1316015
    [24] CAO N, RAN M F, FENG Y, et al. Density functional theory study of N-doping effect on the stability and activity of Pd/NCNTS catalysts for heck reaction[J]. Applied Surface Science,2020,506:144960. doi: 10.1016/j.apsusc.2019.144960
    [25] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,132(15):154104. doi: 10.1063/1.3382344
    [26] MATSUZAkI Y, YAMADA H, CHOWDHURY F A, et al. Ab Initio Study of CO2 Capture Mechanisms in Aqueous Monoethanolamine: Reaction Pathways for the Direct Interconversion of Carbamate and Bicarbonate[J]. J Phys Chem,2013,117(38):9274−9281. doi: 10.1021/jp406636a
    [27] GOVIND N, PETERSEN M, FITZGERALD G, et al. A generalized synchronous transit method for transition state location[J]. Comput Mater Sci,2003,28(2):250−258. doi: 10.1016/S0927-0256(03)00111-3
    [28] GAO Y, HE X, MAO k, et al. Catalytic CO2 Capture via Ultrasonically Activating Dually Functionalized Carbon Nanotubes[J]. ACS Nano,2023,17(9):8345−8354. doi: 10.1021/acsnano.2c12762
    [29] CAO Z, WU X, WEI G, et al. First-Principles Calculations for Adsorption of HF, COF2 , and CS2 on Pt-Doped Single-Walled Carbon Nanotubes[J]. ACS Omega, 2021, 6(37): 23776–23781.
    [30] REZAIE S, SMEULDERS D M J, LUNA-TRIGUERO A. Enhanced hydrogen storage in gold-doped carbon nanotubes: A first-principles study[J]. Chem Eng J,2023,476:146525. doi: 10.1016/j.cej.2023.146525
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  35
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-04-21
  • 录用日期:  2024-04-26
  • 网络出版日期:  2024-06-04

目录

    /

    返回文章
    返回