CO2对褐煤热解行为的影响

Effect of CO2 on pyrolysis behaviors of lignite

  • 摘要: 利用热天平和快速升温固定床进行了CO2气氛下褐煤热解特性的研究,考察了CO2对半焦的产率和气体产物分布的影响。通过对半焦的比表面积、孔结构、官能团和元素含量的分析,确定了CO2对煤热解过程的影响机制。CO2对新生半焦的气化反应破坏了含氢的半焦结构,一方面,促进了羟基、甲基、亚甲基等基团的断裂和苯环的开裂;另一方面,减弱H与其依附本体的结合,增加了氢的流动性,引发了更多的氢自由基生成。这些氢自由基与煤大分子断裂生成的碎片自由基结合生成更多的挥发分,使半焦有较大的比表面积、孔容和开孔率。CO2的引入促进了煤的热解和挥发分的生成,增大了H2、CO、CH4和C2H6等小分子烃类物质逸出,降低了半焦的产率。

     

    Abstract: The pyrolysis of Huolinhe lignite under CO2 atmosphere was carried out in a thermobalance and a fast heating-up fixed bed reactor. The distribution of gases, char yield and its property such as element, surface structure, FT-IR spectra were analyzed. By this, the effect of CO2 on the pyrolysis behaviors was studied. The results show that CO2 gasification of the nascent char, which destroys the hydrogen-containing char structure, not only promotes cracking of benzene ring and fracture of hydroxyl, methyl and methylene groups etc., but also weakens the interaction between H and char matrix and increases the H fluidity, leading to the increase in the generation of H radicals. These H radicals can combine with other free radical fragments generated from fracture of the coal macromolecules to produce more volatiles. This will produce the char with a high specific surface and high pore volume and porosity. The introduction of CO2 promotes the coal pyrolysis and generation of volatile, resulting in decrease in char yield and increase in the evolution amount of H2, CO, CH4 and other small molecules hydrocarbons.

     

/

返回文章
返回